首页> 外文期刊>Journal of ambient intelligence and humanized computing >An effective deep learning features based integrated framework for iris detection and recognition
【24h】

An effective deep learning features based integrated framework for iris detection and recognition

机译:基于虹膜检测和识别的综合框架的有效深度学习功能

获取原文
获取原文并翻译 | 示例

摘要

In recent years, Iris recognition has emerged as an important and trustworthy biometric model to recognize humans. The application of automatic iris recognition models find useful in different fields namely border control, citizen confirmation, and criminal to commercial products. This paper introduces an effective deep learning (DL) based integrated model for precise iris detection, segmentation and recognition. The projected model involves different stages namely preprocessing, detection, segmentation and recognition. Initially, preprocessing of images takes place to improve the quality of the input image using Black Hat filtering, Median filtering and Gamma Correction. Then, Hough Circle Transform model is applied to localize the region of interest, i.e. iris in an effective way. Afterwards, Mask region proposal network with convolution neural network (R-CNN) with Inception v2 model is applied for trustworthy iris recognition and segmentation i.e., recognizing iris/non-iris pixels. For validating the results of the presented model, a detailed simulation takes place using a benchmark CASIA-Iris Thousand dataset and the results are validated interms of detection accuracy. The attained simulation outcome depicted that the projected technique shows maximum recognition accuracy of 99.14% which is superior to other methods such as UniNet.V2, AlexNet, VGGNet, Inception, ResNet and DenseNet models in a significant way.
机译:近年来,虹膜认可被出现为一个重要而值得信赖的生物识别模型,以识别人类。自动虹膜识别模型的应用在不同的领域中有用,即边界控制,公民确认和刑事商业产品。本文介绍了基于有效的深度学习(DL)集成模型,用于精确虹膜检测,分割和识别。预计模型涉及不同阶段,即预处理,检测,分割和识别。最初,使用黑帽滤波,中值滤波和伽马校正来提高图像的预处理来提高输入图像的质量。然后,应用Hough Circle变换模型以使您的感兴趣区域,即虹膜以有效的方式。之后,掩模区域提议网络与卷积神经网络(R-CNN)具有成立V2模型,适用于可信赖的虹膜识别和分段,即识别IRIS /非虹膜像素。为了验证所提出的模型的结果,使用基准Casia-Iris千位数据集进行详细的模拟,结果是检测精度的验证域的验证。所达到的模拟结果描绘了预计的技术显示最大识别准确性为99.14%,其优于其他方法,如uninet.v2,alexnet,Vggnet,Inception,Reset和DenSenet模型的重要方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号