首页> 外文期刊>Journal of ambient intelligence and humanized computing >A reactive search optimization algorithm for scientific workflow scheduling using clustering techniques
【24h】

A reactive search optimization algorithm for scientific workflow scheduling using clustering techniques

机译:一种使用聚类技术进行科学工作流程调度的无功搜索优化算法

获取原文
获取原文并翻译 | 示例

摘要

Cloud computing is the style that can give plenty of shared pool resources such as hardware or software to clients based on requests from the internet. These resources are then scaled up automatically based on the specifications of the clients. Workflow scheduling optimization is an area of research activities in infrastructure as a service (IaaS) of the cloud. This problem is NP-complete. Thus, building a workflow scheduler that is optimum, having a reasonable level of performance and speed of computation, can be quite challenging in a distributed cloud environment. Metaheuristic algorithms may be improved in terms of their solution and its quality and speed of convergence utilizing combining it with other metaheuristic algorithms or any other algorithms that are metaheuristic based on local search. Shuffled frog leaping algorithm (SFLA) was acknowledged a metaheuristic performing heuristic search with a heuristic function (mathematical function) seeking solutions to combinatorial optimization problems. An optimization ratio on makespan %, resource utilization and computational cost performs better for SFLA-RSO with clustering when the number of tasks are increased.
机译:云计算是可以根据来自Internet的请求提供大量共享池资源,例如客户端的硬件或软件。然后根据客户端的规格自动缩放这些资源。工作流程调度优化是基础设施中作为云的服务(IAAS)的研究活动领域。这个问题是np-complete。因此,构建一个最佳的工作流程调度器,具有合理的性能和计算速度,可以在分布式云环境中具有非常具有挑战性的。在其解决方案方面可以改善成血造算法及其利用与其他成群质算法或任何基于本地搜索的成式型算法的任何其他算法的融合的质量和速度。随机交叉的青蛙跳跃算法(SFLA)承认了具有启发式函数(数学函数)寻求解决方案来组合优化问题的成群质主义搜索。当任务数量增加时,Mepespans%的优化比率,资源利用率和计算成本对SFLA-RSO更好地对群集进行了更好的。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号