首页> 外文期刊>Journal of algorithms & computational technology >Feature Selection for Predicting Building Energy Consumption Based on Statistical Learning Method
【24h】

Feature Selection for Predicting Building Energy Consumption Based on Statistical Learning Method

机译:基于统计学习方法的建筑能耗预测特征选择

获取原文
获取原文并翻译 | 示例

摘要

Machine learning methods are widely studied and applied to predict building energy consumption. Since the factors associated with building energy behaviors are quite abundant and complex, this paper investigates for the first time how the selection of subsets of features influence the model performance when statistical learning method is adopted to derive the model. In this paper the optimal features are selected based on the feasibility of obtaining them and on the scores they provide under the evaluation of some filter methods. The selected subset is then evaluated on three data sets by support vector regression involving two kernel functions: radial basis function and polynomial function. Experimental results confirm the validity of the selected subset and show that the proposed feature selection method can guarantee the prediction accuracy and reduces the computational time for data analyzing.
机译:机器学习方法得到了广泛的研究,并被用于预测建筑能耗。由于与建筑能耗行为相关的因素非常丰富和复杂,本文首次研究了采用统计学习方法推导模型时特征子集的选择如何影响模型性能。在本文中,基于获得最佳特征的可能性以及在某些过滤方法的评估下它们提供的分数来选择最佳特征。然后,通过涉及两个内核函数的支持向量回归,在三个数据集上评估选定的子集:径向基函数和多项式函数。实验结果证实了所选择子集的有效性,表明所提出的特征选择方法可以保证预测的准确性,并减少了数据分析的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号