首页> 外文期刊>Journal of algorithms & computational technology >Multi-focus Image Fusion Method Using Higher Order Singular Value Decomposition and Fuzzy Reasoning
【24h】

Multi-focus Image Fusion Method Using Higher Order Singular Value Decomposition and Fuzzy Reasoning

机译:高阶奇异值分解和模糊推理的多焦点图像融合方法

获取原文
获取原文并翻译 | 示例

摘要

Higher order singular value decomposition (HOSVD) is an efficient data-driven decomposition technique, and shows the salient ability in the representation of high-dimensional data and feature extraction. In addition, fuzzy reasoning can solve the uncertainties of the source images' contributions to the fused image and is easy to apply. Motivated by the advantages mentioned above, a new HOSVD and fuzzy reasoning-based multi-focus image fusion method is proposed. Firstly, sub-tensor is constructed by two image patches separately from the two multi-focus images and HOSVD is employed to obtain the decomposition coefficients of image patches. Secondly, the weighted average fusion rule based on fuzzy reasoning is proposed for fusing the decomposition coefficients, and fuzzy reasoning rule is designed based on average energy, regional energy and match degree. Finally, the fused image is achieved by the inversing HOSVD. Experimental results indicate that the proposed method performs better than other methods both visually and quantitatively.
机译:高阶奇异值分解(HOSVD)是一种有效的数据驱动分解技术,在高维数据表示和特征提取中显示出显着的能力。另外,模糊推理可以解决源图像对融合图像贡献的不确定性,并且易于应用。基于上述优点,提出了一种新的基于HOSVD和模糊推理的多焦点图像融合方法。首先,由与两个多焦点图像分开的两个图像块构成子张量,并使用HOSVD来获取图像块的分解系数。其次,提出了基于模糊推理的加权平均融合规则融合分解系数,并基于平均能量,区域能量和匹配度设计了模糊推理规则。最后,通过反转HOSVD获得融合图像。实验结果表明,该方法在视觉和定量上均优于其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号