首页> 外文期刊>Journal of Algebraic Combinatorics >On q-analogs of weight multiplicities for the Lie superalgebras mathfrakgl(n,m)mathfrak{gl}(n,m) and mathfrakspo(2n,M)mathfrak{spo(}2n,M)
【24h】

On q-analogs of weight multiplicities for the Lie superalgebras mathfrakgl(n,m)mathfrak{gl}(n,m) and mathfrakspo(2n,M)mathfrak{spo(}2n,M)

机译:李超代数mathfrakgl(n,m)mathfrak {gl}(n,m)和mathfrakspo(2n,M)mathfrak {spo(} 2n,M)的权重多重q模拟

获取原文
获取原文并翻译 | 示例

摘要

The paper is devoted to the generalization of Lusztig’s q-analog of weight multiplicities to the Lie superalgebras mathfrakgl(n,m)mathfrak{gl}(n,m) and mathfrakspo(2n,M).mathfrak{spo(}2n,M). We define such q-analogs K λ,μ (q) for the typical modules and for the irreducible covariant tensor mathfrakgl(n,m)mathfrak{gl}(n,m) -modules of highest weight λ. For mathfrakgl(n,m),mathfrak{gl}(n,m), the defined polynomials have nonnegative integer coefficients if the weight μ is dominant. For mathfrakspo(2n,M)mathfrak{spo(}2n,M) , we show that the positivity property holds when μ is dominant and sufficiently far from a specific wall of the fundamental chamber. We also establish that the q-analog associated to an irreducible covariant tensor mathfrakgl(n,m)mathfrak{gl}(n,m) -module of highest weight λ and a dominant weight μ is the generating series of a simple statistic on the set of semistandard hook-tableaux of shape λ and weight μ. This statistic can be regarded as a super analog of the charge statistic defined by Lascoux and Schützenberger.
机译:本文致力于将Lusztig的权重多重性q模拟推广到李超代数mathfrakgl(n,m)mathfrak {gl}(n,m)和mathfrakspo(2n,M).mathfrak {spo(} 2n,M )。我们为典型模块和不可约协变量张量mathfrakgl(n,m)mathfrak {gl}(n,m)-权重最高的模块定义此类q模拟K λ,μ(q) λ。对于mathfrakgl(n,m),mathfrak {gl}(n,m),如果权重μ为主导,则定义的多项式具有非负整数系数。对于mathfrakspo(2n,M)mathfrak {spo(} 2n,M),我们表明,当μ为主导且距基本腔室的特定壁足够远时,保持正性。我们还建立了与不可约协变量张量mathfrakgl(n,m)mathfrak {gl}(n,m)-具有最大权重λ和支配权重μ的模块相关的q-模拟是关于一组形状为λ和重量为μ的半标准钩形桌子。该统计可以视为Lascoux和Schützenberger定义的电荷统计的超级模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号