...
首页> 外文期刊>Journal of Aircraft >Experimental Studies of Open Cavity Configurations at Transonic Speeds with Flow Control
【24h】

Experimental Studies of Open Cavity Configurations at Transonic Speeds with Flow Control

机译:流控下跨音速空腔结构的实验研究

获取原文
获取原文并翻译 | 示例

摘要

CHANGES in mean static pressure distributions inside a cavity can result in large pressure gradients, and the unsteady flow disturbances can generate self-sustaining oscillations that, in turn, generate acoustic tones that radiate from the cavity. Both the steady and the unsteady flows can present difficulties for store separation from an internal weapons bay. The steady flows can generate large nose-up pitching moments, and the unsteady flows can induce structural vibration. To ensure safe carriage and separation for transonic and supersonic speeds, a better understanding of the physics of cavity flows must be obtained. Little research has been performed on closed cavities, and even less in transitional cavities. First, they occur less often because of the size of weapons. Second, there are more complex types of flow structure and problems regarding open cavities. Finally, the flow structure in cavities has in general been assumed as two-dimensional. So the closed cavity flow can be assumed as the same as flow over a backward-facing step followed by flow over a forward-facing step. Roshko [1], Krishnamurty [2], Rossiter [3], and Sarohia [4] are some of the early investigators that studied the resulting flowfield inside cavities. Rossiter [3], in 1964, proposed a semiempirical formula for predicting the frequency peaks in high subsonic compressible flows over cavities with a length-to-depth ratio L/D> 1. Noting that the characteristic frequencies vary proportionally to Ux and inversely to L, he plotted the Strouhal numbers Stn = fnL/U^, against the flow Mach number for various cavity configurations.
机译:腔体内平均静压分布的变化会导致较大的压力梯度,并且不稳定的流动扰动会产生自持振荡,进而产生从腔体辐射出的声音。稳定流动和不稳定流动都可能造成将存储与内部武器区分开的困难。稳定流会产生较大的俯仰力矩,而不稳定流会引起结构振动。为了确保跨音速和超音速的安全运输和分离,必须更好地了解腔流的物理原理。对封闭型腔的研究很少,而对过渡型腔的研究则更少。首先,由于武器的大小,它们发生的频率降低。第二,流动结构的类型更加复杂,并且与开放腔有关。最后,腔体中的流动结构通常被假定为二维的。因此,可以将闭腔流动假定为与后向步骤之后的流动,后向步骤之后的流动相同。 Roshko [1],Krishnamurty [2],Rosseter [3]和Sarohia [4]是研究空腔内部流场的早期研究者。 Rossiter [3]在1964年提出了一个半经验公式,用于预测腔内长音速比L / D> 1的亚音速可压缩高流中的频率峰值。请注意,特征频率与Ux成正比,与Ux成反比。在图L中,他针对各种腔构造将斯托洛哈尔数Stn = fnL / U ^相对于流动马赫数作图。

著录项

  • 来源
    《Journal of Aircraft》 |2011年第2期|p.719-724|共6页
  • 作者

    C. Lada; K. Kontis;

  • 作者单位

    Delft University of Technology,2629 HS Delft, The Netherlands;

    University of Manchester,Manchester, England M60 1QD, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号