首页> 外文期刊>Journal of Aircraft >Active Flow-Separation Control on a High-Lift Wing-Body Configuration
【24h】

Active Flow-Separation Control on a High-Lift Wing-Body Configuration

机译:高提升机翼配置上的主动分流控制

获取原文
获取原文并翻译 | 示例
           

摘要

This contribution discusses the implementation of active flow-separation control for a three-dimensional high-lift wing-body configuration under atmospheric low-speed wind-tunnel conditions. The slot actuators are applied on the suction side of the trailing-edge flap to prevent local flow separation. The experimental results indicate that the pulsed blowing flow control technique is effective on the present configuration with a global performance enhancement Numerical investigations are the focus of this article. The baseline case is characterized by substantial portions of separated flow. Thus, the influence of grid resolution and turbulence modeling is investigated. Based on this an intermediate mesh in combination with the Shear Stress Transport model gives the best compromise between quality and computational turnaround times. The steady Reynolds Averaged Navier Stokes (RANS) calculations carried out with constant blowing demonstrate the feasibility to simulate active flow control concepts. The key flow control method is the pulsed blowing. The verification of the unsteady RANS approach with active flow control shows that high computational resources are required for consistent numerical evaluations. The computational results highlight the ability of pulsed blowing at moderate blowing momentum coefficients to suppress the flow separation on the trailing-edge flap. The numerical results show an acceptable agreement with the experiments.
机译:该贡献讨论了在大气低速风洞条件下对三维高升力机翼构型进行主动分流控制的实现。插槽执行器应用于后缘襟翼的吸力侧,以防止局部流分离。实验结果表明,脉冲吹气流量控制技术在当前配置下有效,全局性能得到了增强。数值研究是本文的重点。基线情况的特点是大部分流量分开。因此,研究了网格分辨率和湍流建模的影响。基于此,中间网格与剪切应力传递模型相结合,可以在质量和计算周转时间之间取得最佳折衷。通过恒定吹气进行的稳定雷诺平均纳维斯托克斯(RANS)计算证明了模拟主动流控制概念的可行性。关键的流量控制方法是脉冲吹气。具有主动流控制的非稳态RANS方法的验证表明,一致的数值评估需要大量的计算资源。计算结果突出了以中等吹动量系数进行脉冲吹制的能力,可以抑制后缘襟翼上的气流分离。数值结果表明与实验可以接受。

著录项

  • 来源
    《Journal of Aircraft》 |2013年第1期|56-72|共17页
  • 作者单位

    DLR, German Aerospace Center, 38108 Braunschweig, Germany,Research Engineer, Institute of Aerodynamics and How Technology,Lilienthalplatz 7;

    DLR, German Aerospace Center, 38108 Braunschweig, Germany,Research Engineer, Institute of Aerodynamics and How Technology,Lilienthalplatz 7;

    DLR, German Aerospace Center, 38108 Braunschweig, Germany,Transport Aircraft Department, Institute of Aerodynamics and Flow Technology, Lilienthalplatz 7;

    Technical University Berlin, 10587 Berlin, Germany,Research Assistant, Department of Astronautics and Aeronautics, Marchstrasse 12-14;

    Airbus Operations GmbH, 28199 Bremen, Germany,Project Supervisor, High-Lift Devices Skill Group, Airbus-Allee 1;

    University of Applied Sciences Emden/Leer, 26723 Emden, Germany,Bachelor Student, Constantiaplatz 4;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号