...
首页> 外文期刊>Journal of aerospace engineering >Explicit Finite-Element Analysis of 2024-T3/T351 Aluminum Material under Impact Loading for Airplane Engine Containment and Fragment Shielding
【24h】

Explicit Finite-Element Analysis of 2024-T3/T351 Aluminum Material under Impact Loading for Airplane Engine Containment and Fragment Shielding

机译:2024-T3 / T351铝材料在冲击载荷下用于飞机发动机密闭和碎片防护的显式有限元分析

获取原文
获取原文并翻译 | 示例
           

摘要

Uncontained aircraft engine failure can cause catastrophic damaging effects to aircraft systems if not addressed in the aircraft design. Mitigating the damaging effects of uncontained engine failure and improving the numerical modeling capability of these uncontained engine events are crucial. In this paper, high strain rate material behavior of one of the most extensively used materials in the aircraft industry is simulated and the results are compared against ballistic impact tests. Ballistic limits are evaluated by utilizing explicit finite-element (FE) simulations based on the corresponding ballistic impact experiments performed at different material thicknesses. LS-DYNA is used as a nonlinear explicit dynamics FE code for the simulations. A Johnson-Cook material model with different sets of parameters is employed as a thermo-viscoplastic material model coupled with a nonlinear equation of state and an accumulated damage evaluation algorithm for the numerical simulations. Predictive performance of the numerical models is discussed in terms of material characterization efforts, material model parameters, mesh sensitivities, and effects of stress triaxiality. It is shown that mesh refinement does not necessarily provide better results for ballistic limit simulations without considering and calibrating these interrelated factors. Moreover, it is shown that current models that can only fit a specific function for damage evaluation as a function of stress triaxiality are not always successful in predicting failure, especially if the state of stress changes significantly.
机译:如果在飞机设计中未解决,不完善的飞机发动机故障可能会对飞机系统造成灾难性的破坏作用。减轻非独立发动机故障的破坏性影响并提高这些非独立发动机事件的数值建模能力至关重要。在本文中,模拟了飞机工业中使用最广泛的材料之一的高应变速率材料行为,并将其结果与弹道冲击试验进行了比较。基于在不同材料厚度下执行的相应弹道冲击实验,通过使用显式有限元(FE)模拟来评估弹道极限。 LS-DYNA用作仿真的非线性显式动力学FE代码。具有不同参数集的Johnson-Cook材料模型被用作热粘塑性材料模型,并结合了非线性状态方程和用于数值模拟的累积损伤评估算法。数值模型的预测性能将在材料表征工作,材料模型参数,网格敏感性和应力三轴性方面进行讨论。结果表明,在不考虑和校准这些相互关联的因素的情况下,网格细化不一定能为弹道极限仿真提供更好的结果。此外,已经表明,仅能将特定的函数拟合为应力三轴性函数的损伤评估的当前模型在预测失效方面并不总是成功的,尤其是在应力状态显着变化的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号