首页> 外文期刊>Journal of Aerospace Computing, Information, and Communication >Meteorology-Aware Multi-Goal Path Planning for Large-Scale Inspection Missions with Solar-Powered Aircraft
【24h】

Meteorology-Aware Multi-Goal Path Planning for Large-Scale Inspection Missions with Solar-Powered Aircraft

机译:太阳能飞机大规模检查任务的气象感知多目标路径规划

获取原文
获取原文并翻译 | 示例
           

摘要

Solar-powered aircraft promise significantly increased flight endurance over conventional aircraft. Although this enables large-scale inspection missions, their fragility necessitates that adverse weather is avoided. This paper therefore presents MetPASS, the Meteorology-aware Trajectory Planning and Analysis Software for Solar-powered unmanned aerial vehicles (UAVs). MetPASS is the literature's first path planning framework that considers all safety- and performance-relevant aspects of solar flight: It avoids terrain collisions and no-fly zones, integrates global weather data (sun radiation, wind, gusts, humidity, rain, and thunderstorms), and features a comprehensive energetic model to avoid system risks such as low battery charge. MetPASS leverages dynamic programming and an A*-search-algorithm with a custom cost function and heuristic to plan globally optimal point-to-point or multi-goal paths with coverage guarantees. A full software implementation is provided. The planning results are analyzed using missions of ETH Zurich's AtlantikSolar UAV: an 81 h stationkeeping flight, a hypothetical 4000 km Atlantic crossing, and two multiglacier inspection missions above the Arctic Ocean. It is shown that integrating meteorological data is indispensable for reliable large-scale solar aircraft operations. For example, the nominal no-wind flight time of 106 h across the Atlantic is reduced to 52 h by selecting the correct launch date and flight path.
机译:太阳能飞机有望大大提高传统飞机的飞行寿命。尽管这可以进行大规模的检查任务,但其脆弱性使得必须避免不利的天气。因此,本文提出了MetPASS,这是一种用于气象的轨迹规划和分析软件,用于太阳能无人飞行器(UAV)。 MetPASS是文献中的第一个路径规划框架,该框架考虑了太阳飞行的所有与安全性和性能相关的方面:避免了地形碰撞和禁飞区,整合了全球天气数据(太阳辐射,风,阵风,湿度,雨水和雷暴雨) ),并具有全面的能量模型,可避免电池电量低等系统风险。 MetPASS利用动态编程和具有自定义成本函数的A *搜索算法,并通过启发式方法来规划具有覆盖范围保证的全局最佳点对点或多目标路径。提供了完整的软件实现。使用苏黎世联邦理工学院的AtlantikSolar无人机的任务对规划结果进行了分析:一次81小时的固定飞行,一个假设的4000公里的大西洋穿越以及两个北冰洋上方的多冰川检查任务。结果表明,整合气象数据对于可靠的大规模太阳能飞机运行是必不可少的。例如,通过选择正确的发射日期和飞行路径,横跨大西洋的106 h的额定无风飞行时间将减少至52 h。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号