首页> 外文期刊>JBIC Journal of Biological Inorganic Chemistry >Reductive activation of the heme iron–nitrosyl intermediate in the reaction mechanism of cytochrome c nitrite reductase: a theoretical study
【24h】

Reductive activation of the heme iron–nitrosyl intermediate in the reaction mechanism of cytochrome c nitrite reductase: a theoretical study

机译:血红素铁-亚硝酰基中间体在细胞色素亚硝酸盐还原酶反应机理中的还原活化作用:理论研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cytochrome c nitrite reductase catalyzes the six-electron, seven-proton reduction of nitrite to ammonia without release of any detectable reaction intermediate. This implies a unique flexibility of the active site combined with a finely tuned proton and electron delivery system. In the present work, we employed density functional theory to study the recharging of the active site with protons and electrons through the series of reaction intermediates based on nitrogen monoxide [Fe(II)–NO+, Fe(II)–NO·, Fe(II)–NO−, and Fe(II)–HNO]. The activation barriers for the various proton and electron transfer steps were estimated in the framework of Marcus theory. Using the barriers obtained, we simulated the kinetics of the reduction process. We found that the complex recharging process can be accomplished in two possible ways: either through two consecutive proton-coupled electron transfers (PCETs) or in the form of three consecutive elementary steps involving reduction, PCET, and protonation. Kinetic simulations revealed the recharging through two PCETs to be a means of overcoming the predicted deep energetic minimum that is calculated to occur at the stage of the Fe(II)–NO· intermediate. The radical transfer role for the active-site Tyr218, as proposed in the literature, cannot be confirmed on the basis of our calculations. The role of the highly conserved calcium located in the direct proximity of the active site in proton delivery has also been studied. It was found to play an important role in the substrate conversion through the facilitation of the proton transfer steps.
机译:细胞色素c亚硝酸盐还原酶催化亚硝酸盐的六电子七质子还原为氨,而不会释放任何可检测的反应中间体。这意味着结合了微调的质子和电子传递系统,活性位点具有独特的灵活性。在目前的工作中,我们采用密度泛函理论研究了基于一氧化氮[Fe(II)–NO + ,Fe(II)–NO的一系列反应中间体的质子和电子对活性位的再充电·,Fe(II)-NO-和Fe(II)-HNO]。在马库斯理论的框架内,估计了各种质子和电子转移步骤的活化势垒。使用获得的障碍,我们模拟了还原过程的动力学。我们发现,复杂的充电过程可以通过两种可能的方式完成:通过两个连续的质子耦合电子转移(PCET)或以三个连续的基本步骤的形式进行,这些步骤涉及还原,PCET和质子化。动力学模拟表明,通过两个PCET进行充电是克服预测的深能极小值的一种手段,该极小值是在Fe(II)-NO·中间体阶段发生的。根据我们的计算,无法确定文献中提出的活性位点Tyr218 的自由基转移作用。还研究了位于活性位点直接附近的高度保守的钙在质子传递中的作用。发现通过促进质子转移步骤在底物转化中起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号