...
首页> 外文期刊>Japanese Journal of Applied Physics. Part 1, Regular Papers, Brief Communications & Review Papers >Preparation of FePt Magnetic Nanoparticle Film by Plasma Chemical Vapor Deposition for Ultrahigh Density Data Storage Media
【24h】

Preparation of FePt Magnetic Nanoparticle Film by Plasma Chemical Vapor Deposition for Ultrahigh Density Data Storage Media

机译:等离子体化学气相沉积法制备FePt磁性纳米粒子膜用于超高密度数据存储介质

获取原文
获取原文并翻译 | 示例
           

摘要

We prepared an FePt nanoparticle film for magnetic storage media using 13.56 MHz glow-discharge plasma. Vapors of metal organics, namely biscyclopentadienyl iron (ferrocene) for Fe and (methylcyclopentadienyl)trimethyl platinum for Pt, were introduced into a capacitively coupled flow—through plasma chamber, which consisted of a shower head RF electrode and a grounded orifice plate electrode. Synthesized nanoparticles were directly collected onto a transmission electron microscope (TEM) grid or MgO substrate placed just below the grounded orifice electrode. TEM images showed two kinds of particles, one of which was nanometer sized and isolated and the other appeared as a coagulate of small particles. The diameter of the coagulated particle was larger than 10nm. Nanometer size particles were separated and deposited on MgO substrate by adjusting the gas flow rate through the grounded orifice plate. The magnetization of the FePt nanoparticle film was evaluated by magneto-optical Kerr effect (MOKE) spectroscopy. As-synthesized nanoparticles did not exhibit a loop-shape magnetization curve. Annealing in atmospheric hydrogen was conducted to transform crystal from fcc structure to fct L10 ordered structure. The higher annealing temperature resulted in the more ordered L10 phase formation and the larger coercivity. A sample annealed at 750℃ exhibited a room temperature coercivity of 10 kOe. Also, it was confirmed that nanoparticle film density is critical to the magnetization.
机译:我们使用13.56 MHz辉光放电等离子体制备了用于磁性存储介质的FePt纳米颗粒薄膜。金属有机物的蒸气,即用于Fe的双环戊二烯基铁(二茂铁)和用于Pt的(甲基环戊二烯基)三甲基铂,被引入到一个电容耦合流-通过等离子体室,该室由一个莲蓬头RF电极和一个接地的孔板电极组成。将合成的纳米颗粒直接收集到透射电子显微镜(TEM)栅格或刚好位于接地孔电极下方的MgO衬底上。 TEM图像显示出两种颗粒,一种是纳米尺寸且分离的,另一种是小颗粒的凝结物。凝结颗粒的直径大于10nm。通过调节通过接地孔板的气体流速,分离出纳米尺寸的颗粒,并将其沉积在MgO基板上。通过磁光克尔效应(MOKE)光谱法评估了FePt纳米颗粒薄膜的磁化强度。合成后的纳米颗粒没有显示出环状的磁化曲线。进行大气氢退火以将晶体从fcc结构转变为fct L10有序结构。较高的退火温度导致更有序的L10相形成和较大的矫顽力。在750℃退火的样品的室温矫顽力为10 kOe。另外,已证实纳米颗粒膜的密度对于磁化至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号