首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Automated building characterization for seismic risk assessment using street-level imagery and deep learning
【24h】

Automated building characterization for seismic risk assessment using street-level imagery and deep learning

机译:使用街道层面图像和深度学习的地震风险评估的自动建设特征

获取原文
获取原文并翻译 | 示例

摘要

Accurate seismic risk modeling requires knowledge of key structural characteristics of buildings. However, to date, the collection of such data is highly expensive in terms of labor, time and money and thus prohibitive for a spatially continuous large-area monitoring. This study quantitatively evaluates the potential of an automated and thus more efficient collection of vulnerability-related structural building characteristics based on Deep Convolutional Neural Networks (DCNNs) and street-level imagery such as provided by Google Street View. The proposed approach involves a tailored hierarchical categorization workflow to structure the highly heterogeneous street-level imagery in an application-oriented fashion. Thereupon, we use state-of-the-art DCNNs to explore the automated inference of Seismic Building Structural Types. These reflect the main-load bearing structure of a building, and thus its resistance to seismic forces. Additionally, we assess the independent retrieval of two key building structural parameters, i.e., the material of the lateral-load-resisting system and building height to investigate the applicability for a more generic structural characterization of buildings. Experimental results obtained for the earthquake-prone Chilean capital Santiago show accuracies beyond kappa = 0.81 for all addressed classification tasks. This underlines the potential of the proposed methodology for an efficient in-situ data collection on large spatial scales with the purpose of risk assessments related to earthquakes, but also other natural hazards (e.g., tsunamis, or floods).
机译:准确的地震风险建模需要了解建筑物的关键结构特征。然而,迄今为止,这些数据的集合在劳动力,时间和金钱方面非常昂贵,从而对空间连续的大面积监测禁止。本研究定量评估了基于深度卷积神经网络(DCNNS)和街道级图像的自动化和更有效地收集漏洞相关的结构构建特性的潜力,例如由Google街道视图提供的街道级图像。该方法涉及定制的分层分类工作流程,以以面向应用的方式构建高度异构的街道级图像。于是,我们使用最先进的DCNN探索地震建筑结构类型的自动推理。这些反映了建筑物的主承载结构,从而反映其对地震力的抵抗力。此外,我们评估了两个关键建筑结构参数的独立检索,即横向抵抗系统的材料和建筑物高度,以研究建筑物更通用的结构特征的适用性。为所有解决的分类任务显示,易于地震 - 俯卧的智利首都Santiago的实验结果表明了Kappa = 0.81之外的准确性。这强调了所提出的方法,用于在大型空间尺度上有效的原位数据收集,其具有与地震有关的风险评估的目的,而且还具有其他自然危害(例如海啸或洪水)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号