首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >RectMatch: A novel scan matching method using the rectangle-flattening representation for mobile LiDAR systems
【24h】

RectMatch: A novel scan matching method using the rectangle-flattening representation for mobile LiDAR systems

机译:矩形:一种新的扫描匹配方法,使用移动激光器系统的矩形扁平化表示

获取原文
获取原文并翻译 | 示例

摘要

Point cloud registration is a fundamental problem in 3D computer vision. This paper addresses scan matching for reliable Mobile LiDAR Systems (MLSs) that can traverse different environments and be robust against outliers and noise. High reliability in multiple scenarios is vital to many applications, such as autonomous driving, but poor feature representations often compromise it. This paper introduces an expressive feature called the rectangle-flattening representation to enhance reliability. First, we propose a clustering method based on density, direction and flattening that allows regions to grow in a "planes first, lines second, less flattened structures last" manner. This method can extract rectangles from environments where planes are scarce. Second, we develop a squared point-to-rectangle distance function that is piecewise yet continuously differentiable to leverage the rectangle-flattening representation for scan matching. Unlike the traditional point-to-plane or plane-to-plane residual functions that rely on planar surfaces in other directions to provide translational information, our point-to-rectangle distance function is intrinsically translation-aware.Extensive experiments are conducted on three aspects: scan matching accuracy, robustness, and odometry and mapping on MLSs. We compare our algorithm to several state-of-the-art methods using KITTI and Ford datasets in scan matching accuracy test with environments covering residential areas, highways, rural areas, downtown areas and campuses. Rigorous experiments show that among all of the methods compared, only RectMatch has an overall scan matching success rate surpassing 90% and even 95% across the two datasets. The robustness tests demonstrate that RectMatch can better deal with random outliers and Gaussian noise. For a comprehensive evaluation of RectMatch for MLSs, the third test incorporates five publicly available datasets using different laser scanners on multiple platforms traversing different environments. The results show high algorithm reliability and accuracy.
机译:点云注册是3D计算机视觉中的一个基本问题。本文解决了可遍历不同环境的可靠移动激光系统(MLS)并对异常值和噪声具有稳健性的扫描匹配。多种方案的高可靠性对于许多应用程序至关重要,例如自主驾驶,但特征表示较差往往会损害它。本文介绍了称为矩形扁平化表示的富有表现力的特征,以提高可靠性。首先,我们提出了一种基于密度,方向和平坦化的聚类方法,允许区域在“平面第一,第二线,较少的扁平结构最后”方式中的区域生长。此方法可以从平面稀缺的环境中提取矩形。其次,我们开发了一个平方点的矩形距离函数,这是分段且连续可分辨地,以利用矩形扁平化表示进行扫描匹配。与依赖于其他方向上的平面表面的传统的点对平面或平面到平面剩余功能,以提供翻译信​​息,我们的点矩形距离函数是本质上的平移感知。在三个方面进行扩展实验:扫描匹配的精度,稳健性和测定和MLSS上的映射。我们将算法与扫描匹配精度测试中的算法与扫描匹配精度测试中的几种最先进的方法进行比较,包括覆盖住宅区,高速公路,农村,市中心和校园的环境。严格的实验表明,除了所有方法中,只有矩形匹配的总扫描成功率超过了两个数据集的90%甚至95%。稳健性测试表明,矩形可以更好地处理随机异常值和高斯噪声。对于MLSS的矩形综合评估,第三种测试在多个平台上使用不同的激光扫描仪在遍过不同环境的多个平台上包含五个公共可用数据集。结果显示了高算法的可靠性和精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号