首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Automatic detection of burial mounds (kurgans) in the Altai Mountains
【24h】

Automatic detection of burial mounds (kurgans) in the Altai Mountains

机译:在阿尔泰山区的埋葬土墩(Kurgans)的自动检测

获取原文
获取原文并翻译 | 示例

摘要

The Altai Mountains are one of the most impressive and valuable archaeological areas in the world. Kurgans (burial mounds) of ancient civilizations, which are scattered across the vast Altai area, are an exceptionally valuable source of information for archaeology. These precious archaeological resources, which sometimes have been preserved intact in the permafrost underground for over two millennia, are now under various threats, such as natural disasters, farmland expansion, touristic development, and most notably global warming. A detailed map or inventory of the mounds is essential but is still not available. In this study, we test the deep convolutional neural network (CNN) technique for automatic detection of stone mounds from high-resolution satellite images in four regions in the Altai Mountains. We propose three improvement techniques to increase the performance of off-the-shelf object detection methods that are originally proposed for daily-life objects. Our results demonstrate that it is feasible to apply CNN to detect stone mounds, and the detection results are good enough to capture their spatial distribution. CNN-based object detection can largely narrow down the search area for archaeologists in yet un-surveyed regions, and is therefore useful for preparing field survey campaigns and directing archaeological fieldwork. We also applied the method to an un-surveyed Altai Mountain area and successfully discovered stone mounds that are yet undocumented. Our method can potentially be applied to construct an inventory for all stone mounds present in the whole Altai Mountain region.
机译:阿尔泰山脉是世界上最令人印象深刻和最有价值的考古地区之一。古代文明的Kurgans(埋葬土墩)分散在庞大的阿尔泰地区,是考古学信息的异常有价值的信息来源。这些珍贵的考古资源有时在两个千年的永久冻土地下保存完整,现在在各种威胁下,如自然灾害,农田扩张,旅游发展,以及最符合的全球变暖。 Mounds的详细地图或库存是必不可少的,但仍然无法使用。在这项研究中,我们测试深度卷积神经网络(CNN)技术,用于在阿尔泰山区四个地区的高分辨率卫星图像中自动检测石头土墩。我们提出了三种改进技术,以提高最初提出为日常生活对象的现成物体检测方法的性能。我们的结果表明,应用CNN以检测石头土堆是可行的,并且检测结果足以捕获其空间分布。基于CNN的物体检测可以很大程度上缩小了未调查的区域的考古学家的搜索区域,因此对于准备场调查活动和指导考古实践是有用的。我们还将该方法应用于未调查的阿尔泰山区,并​​成功发现了尚未记录的石头土墩。我们的方法可以应用于构建整个阿尔泰山区所有石头土墩的库存。

著录项

  • 来源
  • 作者单位

    Univ Elect Sci & Technol China Sch Resources & Environm 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

    Univ Elect Sci & Technol China Sch Resources & Environm 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

    Univ Ghent Dept Geog Krijgslaan 281 S8 B-9000 Ghent Belgium;

    Univ Elect Sci & Technol China Sch Resources & Environm 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

    Univ Ghent Dept Archaeol Sint Pieternieuwstr 35 B-9000 Ghent Belgium|Fellow Presidents Int Fellowship Initiat Beijing Peoples R China;

    Univ Ghent Dept Archaeol Sint Pieternieuwstr 35 B-9000 Ghent Belgium;

    Univ Ghent Dept Geog Krijgslaan 281 S8 B-9000 Ghent Belgium;

    Chinese Acad Sci Aerosp Informat Res Inst 9 Dengzhuang South Rd Beijing 100094 Peoples R China;

    Univ Elect Sci & Technol China Sch Resources & Environm 2006 Xiyuan Ave Chengdu 611731 Sichuan Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Kurgans; Stone mounds; Altai Mountains; Remote sensing archaeology; Object detection;

    机译:Kurgans;Stone Mounds;阿尔泰山;遥感考古学;物体检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号