首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model
【24h】

Large-scale rice mapping under different years based on time-series Sentinel-1 images using deep semantic segmentation model

机译:基于时间序列的Sentinel-1图像不同年份的大型米映射,使用深度语义分割模型

获取原文
获取原文并翻译 | 示例

摘要

Identifying spatial distribution of crop planting in large-scale is one of the most significant applications of remote sensing imagery. As an active remote sensing system, synthetic aperture radar (SAR) provides high-resolution polarimetric information of land covers. Nowadays, it is possible to carry out continuous multi-temporal analysis of crops in large-scales since an increased number of spaceborne SAR systems has been launched. This paper formulates rice mapping as a semantic segmentation problem and proposes to use deep learning techniques to exploit the phenological similarity of rice production to identify the rice distribution in large-scales. The study area (i.e., about 58504 km(2)) located in Arkansas River Basin is selected to develop an adapted U-Net for large-scale rice mapping. The Sentinel-1 data in previous years (i.e., data collected in 2017 and 2018) are used to train and fine-tune the network, and current season data (i.e., data collected in 2019) is selected to test the robustness of the network. Experimental results show that the proposed method achieves the state-of-the-art performance as it benefits from the spatial characteristics and phenological similarity of rice. The experiments of rice extraction in different planting pattern regions and extracted features visual projection are conducted to explain the features mined by the adapted U-Net. Furthermore, the advantages of temporal generalization in large-scale are validated by the comparison between space migration and time migration, which indicates that the difference of rice in different years is smaller than that of rice in different spaces. Finally, the issues for operational implementation are discussed.
机译:鉴定大规模作物种植的空间分布是遥感图像最重要的应用之一。作为一种有源遥感系统,合成孔径雷达(SAR)提供了陆地覆盖的高分辨率偏振信息。如今,由于已经发射了增加的星载SAR系统,因此可以对大规模作物进行连续的多时间分析。本文将大米映射制定为语义分割问题,并提出使用深层学习技术利用水稻生产的挥发性相似性,以识别大规模的水稻分布。研究区域(即,约58504公里(2)),位于阿肯色州河流盆地,为大规模米饭映射开发适应的U-Net。前几年的Sentinel-1数据(即2017年和2018年收集的数据)用于培训和微调网络,以及当前季节数据(即2019年收集的数据)被选中以测试网络的稳健性。实验结果表明,该方法达到了最先进的性能,因为它从水稻的空间特征和鉴别相似性中受益。进行不同种植图案区域的水稻提取的实验和提取的特征视觉投影,以解释由适应的U-Net开采的特征。此外,通过空间迁移和时间迁移之间的比较验证了大规模的时间概括的优点,这表明不同年份的水稻的差异小于不同空间中的水稻。最后,讨论了业务实施问题。

著录项

  • 来源
  • 作者单位

    Zhejiang Univ Inst Appl Remote Sensing & Informat Technol Hangzhou 310058 Peoples R China|Zhejiang Univ Coll Environm Resource Sci Key Lab Environm Remediat & Ecol Hlth Minist Educ Hangzhou 310058 Peoples R China;

    Zhejiang Univ Sch Earth Sci Key Lab Geosci Big Data & Deep Resource Zhejiang Hangzhou 310027 Peoples R China;

    Zhejiang Univ Coll Biosyst Engn & Food Sci Hangzhou 310058 Peoples R China;

    Zhejiang Univ Inst Appl Remote Sensing & Informat Technol Hangzhou 310058 Peoples R China|Zhejiang Univ Coll Environm Resource Sci Key Lab Environm Remediat & Ecol Hlth Minist Educ Hangzhou 310058 Peoples R China;

    Zhejiang Univ Inst Appl Remote Sensing & Informat Technol Hangzhou 310058 Peoples R China|Zhejiang Univ Coll Environm Resource Sci Key Lab Environm Remediat & Ecol Hlth Minist Educ Hangzhou 310058 Peoples R China;

    Zhejiang Univ Inst Appl Remote Sensing & Informat Technol Hangzhou 310058 Peoples R China|Zhejiang Univ Coll Environm Resource Sci Key Lab Environm Remediat & Ecol Hlth Minist Educ Hangzhou 310058 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sentinel-1 images; Multi-temporal; Rice mapping; Large-scale; Deep semantic segmentation;

    机译:Sentinel-1图像;多时间;米映射;大规模;深度语义分割;
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号