首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Semantic segmentation of road furniture in mobile laser scanning data
【24h】

Semantic segmentation of road furniture in mobile laser scanning data

机译:移动激光扫描数据中道路家具的语义分割

获取原文
获取原文并翻译 | 示例

摘要

Road furniture recognition has become a prevalent issue in the past few years because of its great importance in smart cities and autonomous driving. Previous research has especially focussed on pole-like road furniture, such as traffic signs and lamp posts. Published methods have mainly classified road furniture as individual objects. However, most road furniture consists of a combination of classes, such as a traffic sign mounted on a street light pole. To tackle this problem, we propose a framework to interpret road furniture at a more detailed level. Instead of being interpreted as single objects, mobile laser scanning data of road furniture is decomposed in elements individually labelled as poles, and objects attached to them, such as, street lights, traffic signs and traffic lights.In our framework, we first detect road furniture from unorganised mobile laser scanning point clouds. Then detected road furniture is decomposed into poles and attachments (e.g. traffic signs). In the interpretation stage, we extract a set of features to classify the attachments by utilising a knowledge-driven method and four representative types of machine learning classifiers, which are random forest, support vector machine, Gaussian mixture model and naive Bayes, to explore the optimal method. The designed features are the unary features of attachments and the spatial relations between poles and their attachments. Two experimental test sites in Enschede dataset and Saunalahti dataset were applied, and Saunalahti dataset was collected in two different epochs. In the experimental results, the random forest classifier outperforms the other methods, and the overall accuracy acquired is higher than 80% in Enschede test site and higher than 90% in both Saunalahti epochs. The designed features play an important role in the interpretation of road furniture. The results of two epochs in the same area prove the high reliability of our framework and demonstrate that our method achieves good transferability with an accuracy over 90% through employing the training data of one epoch to test the data in another epoch.
机译:道路家具认可在过去几年中已成为普遍存在的问题,因为它在智能城市和自动驾驶中非常重要。以前的研究特别专注于杆状道路家具,例如交通标志和灯柱。已发布的方法主要是分类为单独对象的道路家具。然而,大多数道路家具包括课程的组合,例如安装在街灯杆上的交通标志。为了解决这个问题,我们提出了一个框架,以在更详细的水平下解释道路家具。道路家具的移动激光扫描数据而不是被解释为单一对象,在单独标记为杆子的元件中分解,以及附加到它们的物体,例如路灯,交通标志和红绿灯。我们的框架,我们首先检测道路无组织移动激光扫描点云的家具。然后检测到的道路家具被分解成杆和附件(例如交通标志)。在解释阶段,我们通过利用知识驱动的方法和四种代表性的机器学习分类器来提取一组特征来对附件进行分类,这是随机森林,支持向量机,高斯混合模型和天真贝叶斯的机器学习分类器来探索优化方法。设计的功能是附件的一元特征和杆之间的空间关系及其附件。应用了enschede DataSet和Saunalahti数据集中的两个实验测试站点,并在两个不同的时期收集了桑拿包提数据集。在实验结果中,随机森林分类器优于其他方法,并且在Saunalahti时期的核心试验网站中获得的总体精度高于80%,在Saunalahti时期的高于90%。设计的功能在诠释道路家具中发挥着重要作用。同一地区的两个时期的结果证明了我们框架的高可靠性,并证明我们的方法通过采用一个时代的训练数据来测试另一个时代中的数据来实现良好的可转换性。

著录项

  • 来源
  • 作者单位

    Univ Twente Fac Geoinformat Sci & Earth Observat ITC Dept Earth Observat Sci Enschede Netherlands|Finnish Geospatial Res Inst Dept Remote Sensing & Photogrammetry Masalo Finland|Acad Finland Ctr Excellence Laser Scanning Res Helsinki Finland;

    Finnish Geospatial Res Inst Dept Remote Sensing & Photogrammetry Masalo Finland|Acad Finland Ctr Excellence Laser Scanning Res Helsinki Finland;

    Univ Twente Fac Geoinformat Sci & Earth Observat ITC Dept Earth Observat Sci Enschede Netherlands;

    Univ Twente Fac Geoinformat Sci & Earth Observat ITC Dept Earth Observat Sci Enschede Netherlands;

    Finnish Geospatial Res Inst Dept Remote Sensing & Photogrammetry Masalo Finland|Acad Finland Ctr Excellence Laser Scanning Res Helsinki Finland;

    Finnish Geospatial Res Inst Dept Remote Sensing & Photogrammetry Masalo Finland|Acad Finland Ctr Excellence Laser Scanning Res Helsinki Finland;

    Finnish Geospatial Res Inst Dept Remote Sensing & Photogrammetry Masalo Finland|Acad Finland Ctr Excellence Laser Scanning Res Helsinki Finland;

    Finnish Geospatial Res Inst Dept Remote Sensing & Photogrammetry Masalo Finland|Acad Finland Ctr Excellence Laser Scanning Res Helsinki Finland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pole-like road furniture; Interpretation; Decomposition; Machine learning classifiers; Mobile laser scanning;

    机译:杆状道路家具;解释;分解;机器学习分类器;移动激光扫描;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号