首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data
【24h】

Relationships between the mineralogical and chemical composition of tropical soils and topography from hyperspectral remote sensing data

机译:基于高光谱遥感数据的热带土壤矿物化学组成与地形的关系

获取原文
获取原文并翻译 | 示例
       

摘要

Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) data acquired in 1995 in the vicinity of Campo Verde, central Brazil, were analyzed to investigate the relationships between the mineralogical and chemical composition of different soil types and topography. Band depth analysis following the continuum removal separated areas of exposed soils from the other scene components. Principal component analysis (PCA) was applied to this subset of pixel spectra of exposed soils. The Spectral Feature Fitting (SFF) technique was used for mineral identification in the scene. Regression relationships between the silica/aluminum ratio and the absorption band depth values at 2210 nm (kaolinite) and 2260 nm (gibbsite), calculated from laboratory spectra after the continuum removal, were used to estimate the Ki index (1.7SiO_2/Al_2O_3) in AVIRIS spectra, an indicator of the degree of soil weathering in soil surveys. Results were plotted over an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)-derived digital elevation model showing that several soil properties varied with surface elevation. Low reflectance soils (e.g., Rhodic Acrustox with negative first component (PC1) scores, clay texture and higher organic carbon, SiO_2, Al_2O_3, Fe_2O_3 and TiO_2 content) predominated at higher elevations and high reflectance soils (e.g., Ustic Quartzipsamments with positive PC 1 scores, sand texture and lower content of these constituents) at lower elevations. In some portions of the study area, soil composition changed gradually from Rhodic Acrustox at higher elevations to Xanthic Acrustox at lower elevations, or from lower average soil reflectance (negative PC1 scores) and deeper kaolinite absorption band to higher average soil reflectance (positive PC1 scores) and deeper gibbsite absorption band. When applied to AVIRIS data, the laboratory-derived relationship between the Ki index and the depth of the 2210 and 2260 nm absorption bands showed a good correspondence with spectral fits for kaolinite and gibbsite. Kaolinitic areas were associated with high Ki values due to a high SiO_2 and low Al_2O_3 content, whereas gibbsitic areas corresponded to low Ki values and highly weathered soil surfaces due to a low SiO_2 and high Al_2O_3 content.
机译:分析了1995年在巴西中部Campo Verde附近获得的机载可见/红外成像光谱仪(AVIRIS)数据,以研究不同土壤类型和地形的矿物学和化学组成之间的关系。在连续去除之后,带深度分析将暴露土壤的区域与其他场景成分分开。主成分分析(PCA)应用于暴露土壤的像素光谱的这一子集。光谱特征拟合(SFF)技术用于现场的矿物识别。根据连续去除后的实验室光谱计算出的二氧化硅/铝比与2210 nm(高岭石)和2260 nm(三水铝石)的吸收带深度值之间的回归关系,用于估算Ki指数(1.7SiO_2 / Al_2O_3)。 AVIRIS光谱,是土壤调查中土壤风化程度的指标。将结果绘制在先进的星载热发射和反射辐射计(ASTER)衍生的数字高程模型上,该模型显示了几种土壤特性随表面海拔的变化而变化。低反射率土壤(例如,Rhodic Acrustox具有负的第一组分(PC1)分数,粘土质地和较高的有机碳,SiO_2,Al_2O_3,Fe_2O_3和TiO_2含量)在较高海拔和高反射率的土壤中(例如,具有正PC 1的Ustic Quartzipsamments分数,沙子质地和这些成分的含量较低)。在研究区域的某些部分,土壤成分逐渐从较高海拔的Rhodic Acrustox变为较低海拔的Xanthic Acrustox,或从较低的平均土壤反射率(PC1负值)和更深的高岭石吸收带变为较高的平均土壤反射率(PC1阳性) )和更深的三水铝石吸收带。当应用于AVIRIS数据时,实验室得出的Ki指数与2210和2260 nm吸收带深度之间的关系显示出与高岭石和三水铝石光谱拟合的良好对应关系。高岭土区域由于高SiO_2和低Al_2O_3含量而具有高Ki值,而吉布地地区由于低SiO_2和高Al_2O_3含量而对应于低Ki值和高风化土壤表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号