首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >A Synergy Method to Improve Ensemble Weather Predictions and Differential SAR Interferograms
【24h】

A Synergy Method to Improve Ensemble Weather Predictions and Differential SAR Interferograms

机译:一种改进集合天气预报和差分SAR干涉图的协同方法

获取原文
获取原文并翻译 | 示例

摘要

A compensation of atmospheric effects is essential for mm-sensitivity in differential interferometric synthetic aperture radar (DInSAR) techniques. Numerical weather predictions are used to compensate these disturbances allowing a reduction in the number of required radar scenes. Practically, predictions are solutions of partial differential equations which never can be precise due to model or initialisation uncertainties. In order to deal with the chaotic nature of the solutions, ensembles of predictions are computed. From a stochastic point of view, the ensemble mean is the expected prediction, if all ensemble members are equally likely. This corresponds to the typical assumption that all ensemble members are physically correct solutions of the set of partial differential equations. DInSAR allows adding to this knowledge. Observations of refractivity can now be utilised to check the likelihood of a solution and to weight the respective ensemble member to estimate a better expected prediction.
机译:大气影响的补偿对于差分干涉合成孔径雷达(DInSAR)技术中的mm灵敏度至关重要。数值天气预报用于补偿这些干扰,从而减少了所需的雷达场景数量。实际上,预测是偏微分方程的解,由于模型或初始化的不确定性,它们永远无法精确。为了处理解的混沌性质,计算了预测的集合。从随机的角度来看,如果所有集合成员的可能性均等,则集合均值是预期的预测。这对应于所有集合成员都是偏微分方程组的物理正确解的典型假设。 DInSAR允许添加这些知识。现在可以将折射率的观察用于检查解决方案的可能性,并对各个合奏成员进行加权以估计更好的预期预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号