首页> 外文期刊>ISPRS Journal of Photogrammetry and Remote Sensing >A survey on object detection in optical remote sensing images
【24h】

A survey on object detection in optical remote sensing images

机译:光学遥感图像中目标检测的研究

获取原文
获取原文并翻译 | 示例

摘要

Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey (1) template matching-based object detection methods, (2) knowledge based object detection methods, (3) object-based image analysis (OBIA)-based object detection methods, (4) machine learning-based object detection methods, and (5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
机译:光学遥感图像中的目标检测是航空和卫星图像分析领域的一个基本但具有挑战性的问题,在广泛的应用中起着重要的作用,并且近年来受到了极大的关注。尽管存在大量方法,但仍缺乏对有关通用对象检测的文献的深入审查。本文旨在综述该领域的最新进展。与先前针对特定对象类别(例如建筑物和道路)发布的几项调查不同,我们专注于更通用的对象类别,包括但不限于道路,建筑物,树木,车辆,船舶,机场,市区。我们调查了大约270种出版物,其中包括(1)基于模板匹配的对象检测方法,(2)基于知识的对象检测方法,(3)基于基于对象图像分析(OBIA)的对象检测方法,(4)基于机器学习的方法对象检测方法,以及(5)五个公开可用的数据集和三个标准评估指标。我们还将讨论当前研究的挑战,并提出两个有前途的研究方向,即基于深度学习的特征表示和基于弱监督学习的地理空间目标检测。我们希望这项调查将对研究人员更好地了解该研究领域有所帮助。 (C)2016国际摄影测量与遥感学会(ISPRS)。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号