首页> 外文期刊>ISIJ international >Microstructures of Machined Chips in Pure Titanium, Pure Iron and 0.83%C Steel
【24h】

Microstructures of Machined Chips in Pure Titanium, Pure Iron and 0.83%C Steel

机译:纯钛,纯铁和0.83%C钢中加工切屑的显微组织

获取原文
获取原文并翻译 | 示例
           

摘要

Microstructures were examined on the chip specimen of pure titanium with close-packed hexagonal (cph) structure (α-Ti, the shear strain, γ, is ~22), and those of pure iron (α-Fe, γ≈ 7.5) and 0.83%C steel which had originally pearlite structure (γ ≈ 7.5) with body-centered cubic (bcc) structure by the FE-SEM/ EBSP method and optical microscopy. The hardness of the chip specimens was also measured and compared to that of the original materials. UFGed materials could be produced at relatively small shear strain (~7.5) in pure iron and 0.83%C steel. The average grain diameter of the chip specimen was slightly larger in the 0.83%C, because lamellar cementite phase in original pearlite structure hindered the formation of submicron grains. The hardness of the chip specimens increased with increasing shear strain, and the hardness of the chip specimen with γ≈ 7.5 (391 Hv) was ~4 times as much as that of the original material (93.9 Hv) in pure iron. However, it was impossible to produce the ultra-fine grained materials by machining of α-Ti even at γ≈ 22. According to the experimental results obtained so far, the number of slip systems (crystal structure) as well as shear strain seems to be one of the important factors controlling the generation of equiaxed submicron grain structure. Higher stacking fault energy is favorable for cross-slip or climb of dislocations in dynamic recovery which probably governs the generation of submicron grains.
机译:对具有紧密堆积的六边形(cph)结构的纯钛(α-Ti,剪切应变γ为〜22),纯铁(α-Fe,γ≈7.5)和通过FE-SEM / EBSP方法和光学显微镜观察,0.83%C的钢最初具有珠光体组织(γ≈7.5),具有体心立方(bcc)结构。还测量了碎屑样品的硬度并将其与原始材料的硬度进行比较。在纯铁和0.83%C的钢中,UFG材料可以在相对较小的剪切应变(〜7.5)下生产。芯片试样的平均晶粒直径在0.83%C时稍大,因为原始珠光体结构中的层状渗碳体相阻碍了亚微米晶粒的形成。切屑试样的硬度随剪切应变的增加而增加,γ≈7.5(391 Hv)的切屑试样的硬度是纯铁中原始材料(93.9 Hv)的〜4倍。但是,即使在γ≈22时,也无法通过加工α-Ti来生产超细晶粒材料。根据到目前为止获得的实验结果,似乎滑移系统(晶体结构)的数量以及剪切应变是控制等轴亚微米晶粒结构生成的重要因素之一。较高的堆垛层错能量有利于位错的错位错滑或爬升,这可能控制了亚微米晶粒的产生。

著录项

  • 来源
    《ISIJ international》 |2013年第7期|1231-1236|共6页
  • 作者

    Manabu TANAKA; Tadashi FUJITA;

  • 作者单位

    Department of Mechanical Engineering, Faculty of Engineering and Resource Science, Akita University, 1-1 Tagatagakuen-cho, Akita, 010-8502 Japan;

    Department of Mechanical Engineering, Faculty of Engineering and Resource Science, Akita University, 1-1 Tagatagakuen-cho, Akita, 010-8502 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    machining; ultra-fine grained (UFGed) materials; equiaxed submicron grain (SMG) structure; slip system; shear strain;

    机译:加工;超细颗粒(UFGed)材料;等轴亚微米晶粒(SMG)结构;滑移系统剪切应变;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号