首页> 外文期刊>Iranian Journal of Science and Technology. Transaction A, Science >On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices
【24h】

On the Rate of Convergence of the Connectivity Threshold of Random Geometric Graphs with Skew Generalized Cantor Distributed Vertices

机译:具有偏斜广义Cantor分布顶点的随机几何图的连通度阈值的收敛速度

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the rate of convergence of the connectivity threshold of random geometric graphs when the underlying distribution of the vertices has no density. We consider n i.i.d. skew generalized Cantor distributed points on [0, 1] and we study the connectivity threshold of a random geometric graph that is built on these points. We show that for this graph, the connectivity threshold converges almost surely to a constant, similar result as in case of symmetric generalized Cantor distributed. We also study the rate of the convergence of this threshold in terms of the $${mathcal L}_1$$ L 1 norm.
机译:在本文中,我们研究了当顶点的基础分布没有密度时随机几何图的连通性阈值的收敛速度。我们考虑i.i.d.在[0,1]上对Cantor分布点进行了偏斜,我们研究了基于这些点的随机几何图的连通性阈值。我们表明,对于该图,连通性阈值几乎可以肯定地收敛到一个常数,类似于对称广义Cantor分布的情况。我们还根据$$ { mathcal L} _1 $$ L 1范数研究此阈值的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号