...
首页> 外文期刊>International journal for uncertainty quantifications >GENERATING A MAXIMALLY SPACED SET OF BINS TO FILL FOR HIGH-DIMENSIONAL SPACE-FILLING LATIN HYPERCUBE SAMPLING
【24h】

GENERATING A MAXIMALLY SPACED SET OF BINS TO FILL FOR HIGH-DIMENSIONAL SPACE-FILLING LATIN HYPERCUBE SAMPLING

机译:生成最大空间集以填充高维空间填充拉丁超立方体采样

获取原文
获取原文并翻译 | 示例
           

摘要

In the literature, space-filling Latin hypercube sample designs typically are generated by optimizing some criteria such as maximizing the minimum distance between points or minimizing discrepancy. However, such methods are time consuming and frequently produce designs that are highly regular, which can bias results. A fast way to generate irregular space-filling Latin hypercube sample designs is to randomly distribute the sample points to a preselected set of well-spaced bins. Such designs are said to be "binning optimal" and are shown to be irregular. Specifically, Fourier analysis reveals regular patterns in the multi-dimensional spacing of points for the Sobol sequence but not for Binning optimal symmetric Latin hypercube sampling. For M = 2r < 8 dimensions and N = 2s > 2M points, where r and s are non-negative integers, simple patterns can be used to create a list of maximally spaced bins. Good Latin hypercube sample designs for non-power of two dimensions can be generated by discarding excess dimensions. Since the octants/bins containing the 2M end points of an "orientation" (a rotated set of orthogonal axes) are maximally spaced, the process of generating the list of octants simplifies to finding a list of maximally spaced orientations. Even with this simplification, the "patterns" for maximally spaced bins in M > 16 dimensions are not so simple. In this paper, we use group theory to generate 2M/(2M) disjoint orientations, and present an algorithm to sort these into maximally spaced order. Conceptually, the procedure works for arbitrarily large numbers of dimensions. However, memory requirements currently preclude even listing the 2M/(2M) orientation leaders for M > 32 dimensions. In anticipation of overcoming this obstacle, we outline a variant of the sorting algorithm with a low memory requirement for use in M > 32 dimensions.
机译:在文献中,通常通过优化某些标准(例如,最大化点之间的最小距离或最小化差异)来生成填充空格的拉丁文超立方体样本设计。但是,这种方法很耗时,并且经常产生高度规则的设计,这可能会导致结果偏差。生成不规则空间填充的拉丁超立方体样本设计的快速方法是将样本点随机分布到预先选择的一组间隔良好的容器中。此类设计被称为“合并最佳”,并且显示为不规则的。具体而言,傅立叶分析揭示了Sobol序列的点的多维间隔中的规则模式,但对于Binning最佳对称拉丁超立方体采样而言却没有。对于M = 2r <8维,而N = 2s> 2M点,其中r和s是非负整数,可以使用简单的模式来创建最大间隔仓的列表。通过丢弃多余的维度,可以生成用于二维非幂的良好拉丁超立方体样本设计。由于包含“方向”(旋转轴的正交轴)的2M个端点的八分圆点/分格最大间隔,生成八分圆的列表的过程简化为找到最大间隔方向的列表。即使进行了这种简化,对于M> 16维的最大间隔仓的“模式”也不是那么简单。在本文中,我们使用群论来生成2M /(2M)不相交的方向,并提出了一种算法来将它们分类为最大间隔的顺序。从概念上讲,该过程适用于任意数量的尺寸。但是,当前的内存要求甚至无法列出M> 32尺寸的2M /(2M)定向引线。为了克服这一障碍,我们概述了排序算法的一种变体,该算法在M> 32维度中使用时内存需求较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号