首页> 外文期刊>International journal for uncertainty quantifications >MINIMAL SPARSE SAMPLING FOR FOURIER-POLYNOMIAL CHAOS IN ACOUSTIC SCATTERING
【24h】

MINIMAL SPARSE SAMPLING FOR FOURIER-POLYNOMIAL CHAOS IN ACOUSTIC SCATTERING

机译:声散射中傅里叶多项式混沌的最小稀疏采样

获取原文
获取原文并翻译 | 示例
       

摘要

Single frequency acoustic scattering from an uncertain surface (with sinusoidal components) admits an efficient Fourier-polynomial chaos (FPC) expansion of the acoustic field. The expansion coefficients are computed non-intrusively, i.e., by functional sampling from existing acoustic models. The structure of the acoustic decomposition permits sparse selection of FPC orders within the framework of the Smolyak construction. The main result shows a minimal, sparse sampling required to exactly reconstruct FPC expansions of Smolyak form. To this end, this paper defines two concepts: exactly discretizable orthonormal, function systems (EDO); and nested systems created by decimation or "fledging." An EDO generalizes the Nyquist-Shannon sampling conditions (exact recovery of "band-limited" functions given sufficient sampling) to multidimensional FPC expansions. EDO criteria replace the concept of polynomially exact quadrature. Fledging parallels the idea of sub-sampling for sub-bands, from higher to lower level. The FPC Smolyak construction is an EDO fledged from a full grid EDO. An EDO results exactly when the sampled FPC expansion can be inverted to find its coefficients. EDO fledging requires that the lower level (1) has grid points and expansion orders nested in the higher level, and (2) derives its map from the samples to the coefficients from the higher level map. The theory begins with a single dimension fledged EDO, since a tensor product of fledged EDOs yields a fledged tensor EDO. A sequence of nested EDO levels fledge recursively from the largest EDO. The Smolyak construction uses telescoping sums of tensor products up to a maximum level to develop nested EDO systems for sparse grids and orders. The Smolyak construction transform gives exactly the inverse of the weighted evaluation map, and that inverse has a condition number that expresses the numerical limitations of the Smolyak construction.
机译:来自不确定表面(具有正弦分量)的单频声散射允许有效的傅里叶多项式混沌(FPC)扩展声场。扩展系数是非侵入性地计算的,即通过从现有声学模型进行功能采样来计算的。声音分解的结构允许在Smolyak结构的框架内稀疏选择FPC订单。主要结果显示了精确重构Smolyak形式的FPC展开所需的最小稀疏采样。为此,本文定义了两个概念:完全可离散的正交函数系统(EDO);以及通过抽取或“成熟”创建的嵌套系统。 EDO将Nyquist-Shannon采样条件(给定足够采样的情况下完全恢复“带限”功能)概括为多维FPC扩展。 EDO标准取代了多项式精确正交的概念。 Fledging与从高到低的子带子采样的想法平行。 FPC Smolyak结构是从全网格EDO衍生而来的EDO。当采样的FPC扩展可以求逆以找到其系数时,就会产生EDO。 EDO整理要求较低的级别(1)具有嵌套在较高级别的网格点和扩展顺序,并且(2)从样本导出其映射,然后从较高级别的映射中导出系数。该理论始于一维未成熟EDO,因为未成熟EDO的张量积会生成未成熟张量EDO。一系列嵌套的EDO级别从最大的EDO递归递归。 Smolyak结构使用张量积的伸缩总和达到最大水平,以开发用于稀疏网格和订单的嵌套EDO系统。 Smolyak构造变换精确地给出了加权评估图的逆,并且该逆具有表示Smolyak构造的数值限制的条件数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号