首页> 外文期刊>International journal of software science and computational intelligence >New CICT Framework for Deep Learning and Deep Thinking Application
【24h】

New CICT Framework for Deep Learning and Deep Thinking Application

机译:深度学习和深度思考应用的新CICT框架

获取原文
获取原文并翻译 | 示例

摘要

To achieve reliable system intelligence outstanding results, current computational system modeling and simulation community has to face and to solve two orders of modeling limitations at least. As a solution, the author proposes an exponential, pre-spatial arithmetic scheme ("all-powerful scheme") by computational information conservation theory (CICT) to overcome the Information Double-Bind (IDB) problem and to thrive on both deterministic noise (DN) and random noise (RN) to develop powerful cognitive computational framework for deep learning, towards deep thinking applications. In a previous paper the author showed and discussed how this new CICT framework can help us to develop even competitive advanced quantum cognitive computational systems. An operative example is presented. This paper is a relevant contribution towards an effective and convenient "Science 2.0" universal computational framework to develop deeper learning and deep thinking system and application at your fingertips and beyond.
机译:为了获得可靠的系统智能出色的结果,当前的计算系统建模和仿真社区必须面对并至少解决两个建模限制。作为解决方案,作者提出了一种基于计算信息守恒理论(CICT)的指数式空间前算术方案(“全能方案”),以克服信息双重约束(IDB)问题并在确定性噪声方面兴旺发展( DN)和随机噪声(RN)来开发强大的认知计算框架,以进行深度学习,并应用于深度思维应用。在先前的论文中,作者展示并讨论了这个新的CICT框架如何帮助我们开发甚至具有竞争力的高级量子认知计算系统。给出了一个可操作的例子。本文对有效,便捷的“ Science 2.0”通用计算框架做出了重要贡献,以开发更深入的学习和深度思考的系统,并唾​​手可得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号