首页> 外文期刊>International journal of soft computing >A New Semi-Fuzzy Algorithm for Cluster Detection and Characterization
【24h】

A New Semi-Fuzzy Algorithm for Cluster Detection and Characterization

机译:一种新的半模糊聚类检测与表征算法

获取原文
获取原文并翻译 | 示例

摘要

Researchers propose a new algorithm for detecting homogeneous clusters within sets of unlabeled objects represented by numerical data of the form X = {x_1, x_2,…, x_n}⊂R~p. By quickly exploring the available data using an inter-objects similarity measure plus an ambiguity measure of individual objects, this algorithm provides the number of clusters present in X, plus a set of optimized prototypes V = {v_1, v_2,…, v_n} ⊂Rp where each prototype characterizes one of the c detected clusters. The performance of the algorithm is illustrated by typical examples of simulation results obtained for different real test data.
机译:研究人员提出了一种新的算法,用于检测未标记对象集内的均质簇,这些对象由形式为X = {x_1,x_2,…,x_n}⊂R〜p的数值数据表示。通过使用对象间相似性度量加上单个对象的歧义度量快速探索可用数据,该算法提供了X中存在的簇数,以及一组优化的原型V = {v_1,v_2,…,v_n}⊂ Rp,其中每个原型都表征了c个检测到的簇之一。通过针对不同的实际测试数据获得的模拟结果的典型示例来说明算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号