首页> 外文期刊>International journal of soft computing >Enhanced Applicability of Privacy Preservation for Perturbed Data in Multi-Partitioned Data Set
【24h】

Enhanced Applicability of Privacy Preservation for Perturbed Data in Multi-Partitioned Data Set

机译:增强的多分区数据集中扰动数据隐私保护的适用性

获取原文
获取原文并翻译 | 示例

摘要

The perturbation technique has been widely considered for privacy preserving in data mining for different datasets. Generally, multi-partitioned datasets comprises of both vertical and horizontal data sets which is being a current demand of e-Business and e-Commerce data mining environment. In perturbation process, arbitrary noise from a recognized distribution is processed as privacy susceptible data, prior the data is thrown to the data miner. Consequently, the data miner rebuilds estimation to the unique data distribution from the perturbed data and exercises the renovated delivery for data mining principles. Owing to the count of noise, loss of information versus conservation of privacy is a constant transaction in the perturbation based techniques. The question is to what level the users are disposed to cooperate with their privacy? This is a preference that amends from individual to individual. To assess a tradeoff among data privacy and simplicity of individual's data, the first research is to describe the data perturbation technique with validation and authentication. Diverse individuals may have diverse approaches towards confidentiality, based on traditions and cultures. Unfortunately, the earlier perturbation based privacy preserving data mining techniques do not permit the individuals to decide their preferred privacy levels. This is a negative aspect as privacy is an individual choice. In this study, researchers propose an individually adaptable perturbation model which enables the individuals to choose their own privacy levels. The effectiveness of the proposed model lies is the enhancement of the Applicability of Privacy Preservation for Perturbed Data in Multi-partitioned datasets (APPDM) demonstrated by diverse experiments conducted on both synthetic and real-world data sets. Based on the experimental evaluation, researchers propose a simple, valuable and resourceful method to construct data mining models from perturbed data and enhance the process of privacy preservation.
机译:扰动技术已被广泛考虑用于不同数据集的数据挖掘中的隐私保护。通常,多分区数据集包括垂直和水平数据集,这是电子商务和电子商务数据挖掘环境的当前需求。在扰动过程中,在将数据扔给数据挖掘器之前,会将识别出的分布中的任意噪声作为对隐私敏感的数据进行处理。因此,数据挖掘者将从被扰动的数据中重建出对唯一数据分布的估计,并根据数据挖掘原理对数据进行更新。由于噪声的数量,信息丢失与隐私保护是基于扰动的技术中的一项持续交易。问题是用户在多大程度上可以与其隐私合作?这是一个因人而异的偏好。为了评估数据隐私和个人数据的简单性之间的折衷,第一项研究是描述具有验证和认证的数据摄动技术。基于传统和文化,不同的个人可能对保密采取不同的方法。不幸的是,较早的基于扰动的隐私保护数据挖掘技术不允许个人决定他们偏爱的隐私级别。这是一个消极的方面,因为隐私是个人选择。在这项研究中,研究人员提出了一种可个体适应的扰动模型,该模型使个人可以选择自己的隐私级别。所提出的模型的有效性在于,通过对合成数据集和真实数据集进行的各种实验证明,对多分区数据集(APPDM)中的扰动数据的隐私保护的适用性得到了增强。基于实验评估,研究人员提出了一种简单,有价值和足智多谋的方法,可以从受干扰的数据构建数据挖掘模型,并增强隐私保护的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号