首页> 外文期刊>International journal of secure software engineering >Vulnerability Discovery Modeling for Open and Closed Source Software
【24h】

Vulnerability Discovery Modeling for Open and Closed Source Software

机译:开源软件和开源软件的漏洞发现建模

获取原文
获取原文并翻译 | 示例

摘要

With growing concern for security, the researchers began with the quantitative modeling of vulnerabilities termed as vulnerability discovery models (VDM). These models aim at finding the trend of vulnerability discovery with time and facilitate the developers in patch management, optimal resource allocation and assessing associated security risks. Among the existing models for vulnerability discovery, Alhazmi-Malaiya Logistic Model (AML) is considered the best fitted model on all kinds of datasets. But, each of the existing models has a predefined basic shape and can only fit datasets following their basic shapes. Thus, shape of the dataset forms the decisive parameter for model selection. In this paper, the authors have proposed a new model to capture a wide variety of datasets irrespective of their shape accounting for better goodness of fit. The proposed model has been evaluated on three real life datasets each for open and closed source software and the models are ranked based on their suitability to discover vulnerabilities using normalized criteria distance (NCD) technique.
机译:随着人们对安全性的日益关注,研究人员从称为漏洞发现模型(VDM)的漏洞的定量建模开始。这些模型旨在随时间发现漏洞发现的趋势,并帮助开发人员进行补丁管理,优化资源分配以及评估相关的安全风险。在现有的漏洞发现模型中,Alhazmi-Malaiya Logistic模型(AML)被认为是所有数据集上的最佳拟合模型。但是,每个现有模型都具有预定义的基本形状,并且只能按照其基本形状来拟合数据集。因此,数据集的形状形成了用于模型选择的决定性参数。在本文中,作者提出了一种新模型来捕获各种各样的数据集,而不论它们的形状如何,都可以更好地拟合拟合。所提出的模型已经在三个真实的数据集上进行了评估,每个数据集分别用于开源软件和闭源软件,并根据模型的适用性对模型进行排名,以使用归一化标准距离(NCD)技术发现漏洞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号