...
首页> 外文期刊>The International journal of robotics research >Formal verification of obstacle avoidance and navigation of ground robots
【24h】

Formal verification of obstacle avoidance and navigation of ground robots

机译:地面机器人避障和导航的形式验证

获取原文
获取原文并翻译 | 示例

摘要

>This article answers fundamental safety questions for ground robot navigation: under which circumstances does which control decision make a ground robot safely avoid obstacles? Unsurprisingly, the answer depends on the exact formulation of the safety objective, as well as the physical capabilities and limitations of the robot and the obstacles. Because uncertainties about the exact future behavior of a robot’s environment make this a challenging problem, we formally verify corresponding controllers and provide rigorous safety proofs justifying why the robots can never collide with the obstacle in the respective physical model. To account for ground robots in which different physical phenomena are important, we analyze a series of increasingly strong properties of controllers for increasingly rich dynamics and identify the impact that the additional model parameters have on the required safety margins. We analyze and formally verify: (i) static safety, which ensures that no collisions can happen with stationary obstacles; (ii) passive safety, which ensures that no collisions can happen with stationary or moving obstacles while the robot moves; (iii) the stronger passive-friendly safety, in which the robot further maintains sufficient maneuvering distance for obstacles to avoid collision as well; and (iv) passive orientation safety, which allows for imperfect sensor coverage of the robot, i.e., the robot is aware that not everything in its environment will be visible. We formally prove that safety can be guaranteed despite sensor uncertainty and actuator perturbation. We complement these provably correct safety properties with liveness properties: we prove that provably safe motion is flexible enough to let the robot navigate waypoints and pass intersections. To account for the mixed influence of discrete control decisions and the continuous physical motion of the ground robot, we develop corresponding hybrid system models and use differential dynamic logic theorem-proving techniques to formally verify their correctness. Since these models identify a broad range of conditions under which control decisions are provably safe, our results apply to any control algorithm for ground robots with the same dynamics. As a demonstration, we also synthesize provably correct runtime monitor conditions that check the compliance of any control algorithm with the verified control decisions.
机译:>本文回答了地面机器人导航的基本安全性问题:在哪种情况下,哪种控制决策会使地面机器人安全地避开障碍物?毫不奇怪,答案取决于安全目标的精确制定,以及机器人的物理功能和局限性以及障碍物。由于不确定机器人环境未来行为的不确定性,因此这是一个具有挑战性的问题,我们正式验证了相应的控制器并提供了严格的安全证明,证明了机器人为何永远不会与相应物理模型中的障碍物发生碰撞。为了说明其中不同物理现象很重要的地面机器人,我们分析了控制器的一系列日益强大的特性,以提供越来越丰富的动态特性,并确定了附加模型参数对所需安全裕度的影响。我们分析并正式验证:(i)静态安全性,可确保固定障碍物不会发生碰撞; (ii)被动安全,确保机器人移动时不会与静止或移动的障碍物发生碰撞; (iii)更强的被动友好安全性,其中机器人进一步为障碍物保持足够的操纵距离,以避免碰撞; (iv)被动定向安全性,它可以使机器人的传感器覆盖范围不完整,即,机器人知道并非其环境中的所有物体都可见。我们正式证明,尽管存在传感器不确定性和执行器扰动,仍可以保证安全性。我们用活动特性补充了这些可证明的正确安全特性:我们证明了可证明的安全运动足够灵活,可以使机器人导航路点并通过交叉路口。为了解决离散控制决策和地面机器人连续物理运动的混合影响,我们开发了相应的混合系统模型,并使用微分动态逻辑定理证明技术来正式验证其正确性。由于这些模型确定了范围广泛的条件,在这些条件下可证明控制决策是安全的,因此我们的结果适用于具有相同动力学特性的地面机器人的任何控制算法。作为演示,我们还合成了可证明正确的运行时监视条件,以检查任何控制算法是否符合经过验证的控制决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号