首页> 外文期刊>International Journal of Reliability, Quality and Safety Engineering >FORWARD APPORTIONMENT OF CENSORED COUNTS FOR DISCRETE NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION OF FAILURE PROBABILITIES
【24h】

FORWARD APPORTIONMENT OF CENSORED COUNTS FOR DISCRETE NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION OF FAILURE PROBABILITIES

机译:离散概率非参数最大似然估计的破损计数的正向分配

获取原文
获取原文并翻译 | 示例

摘要

Empirical cumulative lifetime distribution function is often required for selecting lifetime distribution. When some test items are censored from testing before failure, this function needs to be estimated, often via the approach of discrete nonparametric maximum likelihood estimation (DN-MLE). In this approach, this empirical function is expressed as a discrete set of failure-probability estimates. Kaplan and Meier used this approach and obtained a product-limit estimate for the survivor function, in terms exclusively of the hazard probabilities, and the equivalent failure-probability estimates. They cleverly expressed the likelihood function as the product of terms each of which involves only one hazard probability ease of derivation, but the estimates for failure probabilities are complex functions of hazard probabilities. Because there are no closed-form expressions for the failure probabilities, the estimates have been calculated numerically. More importantly, it has been difficult to study the behavior of the failure probability estimates, e.g., the standard errors, particularly when the sample size is not very large. This paper first derives closed-form expressions for the failure probabilities. For the special case of no censoring, the DN-MLE estimates for the failure probabilities are in closed forms and have an obvious, intuitive interpretation. However, the Kaplan-Meier failure-probability estimates for cases involving censored data defy interpretation and intuition. This paper then develops a simple algorithm that not only produces these estimates but also provides a clear, intuitive justification for the estimates. We prove that the algorithm indeed produces the DN-MLE estimates and demonstrate numerically their equivalence to the Kaplan-Meier-based estimates. We also provide an alternative algorithm.
机译:选择寿命分布通常需要经验累积寿命分布函数。当某些测试项目在失败之前无法进行测试时,通常需要通过离散非参数最大似然估计(DN-MLE)的方法来估计此功能。在这种方法中,该经验函数表示为故障概率估计值的离散集合。卡普兰(Kaplan)和迈耶(Meier)使用这种方法,并仅根据危险概率和等效的故障概率估计,获得了幸存者功能的乘积极限估计。他们巧妙地将似然函数表示为项的乘积,每个项仅涉及一个危险概率的推导,但是失败概率的估计值是危险概率的复杂函数。由于没有针对故障概率的封闭式表达式,因此已通过数值计算了估算值。更重要的是,很难研究故障概率估计的行为,例如标准误差,特别是在样本量不是很大的情况下。本文首先推导了失效概率的封闭式表达式。对于不进行审查的特殊情况,DN-MLE对故障概率的估计是封闭形式的,并且具有明显,直观的解释。但是,对于涉及审查数据的案例,Kaplan-Meier失败概率估计无法解释和直觉。然后,本文开发了一种简单的算法,该算法不仅可以生成这些估计值,而且可以为这些估计值提供清晰,直观的理由。我们证明该算法确实产生了DN-MLE估计,并在数值上证明了它们与基于Kaplan-Meier的估计的等效性。我们还提供了一种替代算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号