首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >ANIMAL: Validation and Applications of Nonlinear Registration-Based Segmentation
【24h】

ANIMAL: Validation and Applications of Nonlinear Registration-Based Segmentation

机译:动物:基于非线性配准的分割的验证和应用

获取原文
获取原文并翻译 | 示例

摘要

Magnetic resonance imaging (MRI) has become the modality of choice for neuro-anatomical imaging. Quantitative analysis requires the accurate and reproducible labeling of all voxels in any given structure within the brain. Since manual labeling is prohibitively time-consuming and error-prone we have designed an automated procedure called ANIMAL (Automatic Nonlinear Image Matching and Anatomical Labeling) to objectively segment gross anatomical structures from 3D MRIs of normal brains. The procedure is based on nonlinear registration with a previously labeled target brain, followed by numerical inverse transformation of the labels to the native MRI space. Besides segmentation, ANIMAL has been applied to non-rigid registration and to the analysis of morphometric variability. In this paper, the nonlinear registration approach is validated on five test volumes, produced with simulated deformations. Experiments show that the ANIMAL recovers 64% of the nonlinear residual variability remaining after linear registration. Segmentations of the same test data are presented as well. The paper concludes with two applications of ANIMAL using real data. In the first, one MRI volume is nonlinearly matched to a second and is automatically segmented using labels, predefined on the second MRI volume. The automatic segmentation compares well with manual labeling of the same structures. In the second application, ANIMAL is applied to seventeen MRI data sets, and a 3D map of anatomical variability estimates is produced. The automatic variability estimates correlate well (r = 0.867, p = 0.01) with manual estimates of inter-subject variability.
机译:磁共振成像(MRI)已成为神经解剖学成像的选择方式。定量分析要求对大脑内任何给定结构中的所有体素进行准确且可重复的标记。由于手动标记非常耗时且容易出错,因此我们设计了一种称为ANIMAL(自动非线性图像匹配和解剖标记)的自动化程序,以客观地分割正常大脑的3D MRI的总体解剖结构。该程序基于与先前标记的目标大脑的非线性配准,然后将标记数字逆变换到原始MRI空间。除分割外,ANIMAL还应用于非刚性配准和形态计量变异性分析。在本文中,非线性配准方法在模拟变形产生的五个测试量上得到了验证。实验表明,在线性配准后,ANIMAL可以恢复剩余的64%的非线性残差。还显示了相同测试数据的细分。本文以使用实际数据的ANIMAL的两个应用结尾。在第一个中,一个MRI体积与第二个MRI体积非线性匹配,并使用在第二个MRI体积上预定义的标签自动分割。自动分割与相同结构的手动标记相比非常好。在第二个应用程序中,将ANIMAL应用于17个MRI数据集,并生成了解剖变异估计的3D图。自动变异性估计与受试者间变异性的人工估计具有很好的相关性(r = 0.867,p = 0.01)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号