首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Evaluation of Livable City Based on GIS and PSO-SVM: A Case Study of Hunan Province
【24h】

Evaluation of Livable City Based on GIS and PSO-SVM: A Case Study of Hunan Province

机译:基于GIS和PSO-SVM的宜居城市评价 - 以湖南省为例

获取原文
获取原文并翻译 | 示例

摘要

Under the background of accelerating urbanization and increasing stress of ecological environment, the construction of livable city has attracted extensive attention and become a hot spot in the study of urban problems in the world. The evaluation of livable city is a reference for the comparison of urban development and also one of the evaluation criteria for the comparison of urban competitiveness. This paper focuses on three different evaluation factors of ecological environment, economic development and public service to construct an evaluation model of environmental quality of livable cities. Then particle swarm optimization (PSO) is introduced to optimize the parameters of support vector machine (SVM), and a SVM algorithm based on PSO (PSO-SVM) is proposed to solve the livable city evaluation model. Finally, the spatial analysis combined with ArcGIS software obtained the livable city evaluation and division results of Hunan Province. The results show that PSO-SVM algorithm is superior to SVM, BA-SVM, GA-SVM, and has the advantages of faster speed and higher classification accuracy.
机译:在加速城市化和生态环境的压力增加的背景下,居住城市的建设引起了广泛的关注,并成为世界城市问题研究的热点。宜居城市的评估是对城市发展比较的参考,也是城市竞争力比较的评价标准之一。本文重点介绍了生态环境,经济发展和公共服务的三种不同评价因素,构建了宜居城市环境质量的评价模型。然后引入粒子群优化(PSO)以优化支持向量机(SVM)的参数,并且提出了一种基于PSO(PSO-SVM)的SVM算法来解决即使的城市评估模型。最后,空间分析与ArcGIS软件相结合,获得了湖南省宜居的城市评估和分裂结果。结果表明,PSO-SVM算法优于SVM,BA-SVM,GA-SVM,具有更快的速度和更高分类精度的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号