首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Finding Suitable Membership Functions for Mining Fuzzy Association Rules in Web Data Using Learning Automata
【24h】

Finding Suitable Membership Functions for Mining Fuzzy Association Rules in Web Data Using Learning Automata

机译:使用学习自动机确定用于在Web数据中采用模糊关联规则的合适的会员函数

获取原文
获取原文并翻译 | 示例

摘要

Transactions in web data are huge amounts of data, often consisting of fuzzy and quantitative values. Mining fuzzy association rules can help discover interesting relationships between web data. The quality of these rules depends on membership functions, and thus, it is essential to find the suitable number and position of membership functions. The time spent by users on each web page, which shows their level of interest in those web pages, can be considered as a trapezoidal membership function (TMF). In this paper, the optimization problem was finding the appropriate number and position of TMFs for each web page. To solve this optimization problem, a learning automata-based algorithm was proposed to optimize the number and position of TMFs (LA-ONPTMF). Experiments conducted on two real datasets confirmed that the proposed algorithm enhances the efficiency of mining fuzzy association rules by extracting the optimized TMFs.
机译:Web数据中的事务是大量数据,通常由模糊和定量值组成。 挖掘模糊关联规则可以帮助发现Web数据之间有趣的关系。 这些规则的质量取决于隶属函数,因此,必须找到会员函数的合适数量和位置。 每个网页上的用户花费的时间,它显示了它们在这些网页中的兴趣水平,可以被视为梯形隶属函数(TMF)。 在本文中,优化问题在找到每个网页的TMFS的适当数量和位置。 为了解决这个优化问题,提出了一种基于学习自动机基的算法来优化TMFS(La-OnptMF)的数量和位置。 在两个实时数据集上进行的实验证实,所提出的算法通过提取优化的TMF来提高挖掘模糊关联规则的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号