首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Mask Wearing Detection Algorithm Based on Improved Tiny YOLOv3
【24h】

Mask Wearing Detection Algorithm Based on Improved Tiny YOLOv3

机译:基于改进的微小YOLOV3的掩模磨损检测算法

获取原文
获取原文并翻译 | 示例

摘要

The new coronavirus spreads widely through droplets, aerosols and other carriers. Wearing a mask can effectively reduce the probability of being infected by the virus. Therefore, it is necessary to monitor whether people wear masks in public to prevent the virus from spreading further. However, there is no mature general mask wearing detection algorithm. Based on tiny YOLOv3 algorithm, this paper realizes the detection of face with mask and face without mask, and proposes an improvement to the algorithm. First, the loss function of the bounding box regression is optimized, and the original loss function is optimized as the Generalized Intersection over Union (GIoU) loss. Second, the network structure is improved, the residual unit is introduced into the backbone to increase the depth of the network and the detection of two scales is expanded to three. Finally, the size of anchor boxes is clustered based on k-means algorithm. The experimental results on the constructed dataset show that, compared with the tiny YOLOv3 algorithm, the algorithm proposed in this paper improves the detection accuracy while maintaining high-speed inference ability.
机译:新的冠状病毒通过液滴,气溶胶和其他载体广泛传播。穿着面具可以有效地降低受病毒感染的概率。因此,有必要监控人们是否在公共场合佩戴面具,以防止病毒进一步扩散。但是,没有成熟的普通掩模佩戴检测算法。基于微小的yolov3算法,本文实现了在没有掩模的情况下用掩模和面部的脸部检测,并提出改进算法。首先,优化边界框回归的损耗功能,并且原始损耗函数被优化为Union(Giou)丢失的广义交叉口。其次,网络结构得到改善,将残余单元引入骨干中以增加网络的深度,并且两个尺度的检测扩展到三个。最后,基于K-Means算法群集锚箱的大小。构造数据集的实验结果表明,与微小yolov3算法相比,本文提出的算法提高了检测精度,同时保持高速推理能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号