首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Vehicle Seat Detection Based on Improved RANSAC-SURF Algorithm
【24h】

Vehicle Seat Detection Based on Improved RANSAC-SURF Algorithm

机译:基于改进的RANSAC冲浪算法的车辆座椅检测

获取原文
获取原文并翻译 | 示例

摘要

In order to detect the type of vehicle seat and the missing part of the spring hook, this paper proposes an improved RANSAC-SURF method. First, the image is filtered by a Gauss filter. Second, an improved RANSAC-SURF algorithm is used to detect the types of vehicle seats. Extract the feature points of vehicle seats. The feature points are matched according to the improved RANSAC-SURF algorithm. Third, the image distortion of the vehicle seat is corrected by the method of perspective transformation. Determine whether the seat's spring hook is missing or not according to the absolute value of the gray difference between the image collected by the camera and the image of the normal installation. The experimental results show that the MSE of the Gauss filter under a 5 * 5 template is 19.0753, and the PSNR is 35.3261, which is better than that of the mean filter and the median filter. The total matching logarithm of feature points and the number of intersection points are 188 and 18, respectively, in the improved RANSAC-SURF matching algorithm.
机译:为了检测车辆座椅的类型和弹簧钩的缺失部分,本文提出了一种改进的RANSAC冲浪方法。首先,通过高斯滤波器过滤图像。其次,改进的Ransac-Surf算法用于检测车辆座椅的类型。提取车辆座椅的特征点。特征点根据改进的Ransac-Surf算法匹配。第三,通过透视变换方法校正车辆座椅的图像变形。根据摄像机收集的图像与正常安装的图像之间的灰色差异,确定座椅的弹簧钩是否缺失或不缺失。实验结果表明,在5 * 5模板下的高斯过滤器的MSE为19.0753,PSNR为35.3261,比平均过滤器和中值过滤器更好。特征点的总匹配对数和交叉点的数量分别在改进的Ransac-Surf匹配算法中分别为188和18。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号