首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Intensity Factor Method for Segmenting Human Body Region in Gray-scale Infrared Image
【24h】

Intensity Factor Method for Segmenting Human Body Region in Gray-scale Infrared Image

机译:在灰度红外图像中分割人体区域的强度因子方法

获取原文
获取原文并翻译 | 示例

摘要

The normalized intensity factor based on statistical overlinerst-order moment of gray-scale image is deoverlinened in this paper. The intensity factor can be used to distinguish the brightness level of a gray-scale image and to determine a threshold value for image segmentation. According to the intensity factor and the characteristic of human body in the gray-scale infrared image, a new algorithm of calculating the intensity-level threshold is designed which can be used for segmenting human body area in an infrared image. In the algorithm, based on the concept of intensity factor, a histogram of low brightness gray-scale image (LGIRI) is divided into three parts: a low-intensity region (0.25L), a medium-intensity region (0.25-0.75L), and a highintensity region (0.75-1L), and then the intensity i which satisoverlinees the LaMoiTHORN 1/4 0:5kLLa is selected as an intensity-level value kh, and the intensity i which satisoverlinees LMoiTHORN 1/4 0:5kLL is selected as an intensity-level value th, at last 0:5oth thorn khTHORN is the pixel classioverlinecation threshold (the intensity-level threshold). It is noted that there is no preprocessing for image noise overlineltering and/or processing, and all images come from OTCBVS. Compared with the method of selecting trough points of the histogram as the intensity-level threshold, this algorithm avoids the problem of nonexistence of evident trough point at the high-intensity level of a histogram. Also, the experimental results show that the segmenting results of LGIRI processed by the algorithm are better than those of Otsu method.
机译:本文在灰度图像的统计覆盖阶段的归一化强度因子被释放出来。强度因子可用于区分灰度图像的亮度水平并确定图像分割的阈值。根据灰度红外图像中人体的强度因子和人体特征,设计了一种计算强度级阈值的新算法,其可用于在红外图像中分割人体区域。在算法中,基于强度因数的概念,低亮度灰度图像(Lgiri)的直方图被分成三个部分:低强度区域(0.25L),中强区域(0.25-0.75L )和高度亮度区域(0.75-11),然后是令人满意的强度I,其令人满意的Lamoithorn 1/4 0:5KLLA作为强度水平值Kh,以及令人满意的强度I Lmoithorn 1/4 0:5kLL被选为强度级别值Th,最后0:5HOTH刺khthorn是像素分类阈值(强度级阈值)。注意,没有预处理的图像噪声覆盖和/或处理,并且所有图像来自OTCBV。与选择直方图的槽点作为强度级阈值的方法相比,该算法避免了直方图的高强度水平处的明显槽点不存在的问题。此外,实验结果表明,通过算法处理的LgiRI的分段结果优于OTSU方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号