首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Task Scheduling in Heterogeneous Computing Systems Based on Machine Learning Approach
【24h】

Task Scheduling in Heterogeneous Computing Systems Based on Machine Learning Approach

机译:基于机器学习方法的异构计算系统中的任务调度

获取原文
获取原文并翻译 | 示例

摘要

Task scheduling problem of heterogeneous computing system (HCS), which with increasing popularity, nowadays has become a research hotspot in this domain. The task scheduling problem of HCS, which can be described essentially as assigning tasks to the proper processor for executing, has been shown to be NP-complete. However, the existing scheduling algorithm suffers from an inherent limitation of lacking global view. Here, we reported a novel task scheduling algorithm based on Multi-Logistic Regression theory (called MLRS) in heterogeneous computing environment. First, we collected the best scheduling plans as the historical training set, and then a scheduling model was established by which we could predict the following schedule action. Through the analysis of experimental results, it is interpreted that the proposed algorithm has better optimization effect and robustness.
机译:异构计算系统(HCS)的任务调度问题,随着普及的越来越越来越多,现在已经成为这个域名的研究热点。 HCS的任务调度问题,可以基本上将任务分配给用于执行的正确处理器,已经显示为NP-Tress。然而,现有的调度算法遭受缺乏全局视图的固有限制。在这里,我们报道了一种基于异构计算环境中的多逻辑回归理论(称为MLR)的新型任务调度算法。首先,我们收集了作为历史培训集的最佳计划计划,然后建立了调度模型,我们可以预测以下计划行动。通过对实验结果的分析,它被解释为所提出的算法具有更好的优化效果和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号