首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Sentence Similarity Algorithm Based on Fused Bi-Channel Dependency Matching Feature
【24h】

Sentence Similarity Algorithm Based on Fused Bi-Channel Dependency Matching Feature

机译:基于熔融双通道依赖关系匹配功能的句子相似性算法

获取原文
获取原文并翻译 | 示例

摘要

Many tasks of natural language processing such as information retrieval, intelligent question answering, and machine translation require the calculation of sentence similarity. The traditional calculation methods used in the past could not solve semantic understanding problems well. First, the model structure based on Siamese lack of interaction between sentences; second, it has matching problem which contains lacking position information and only using partial matching factor based on the matching model. In this paper, a combination of word and word's dependence is proposed to calculate the sentence similarity. This combination can extract the word features and word's dependency features. To extract more matching features, a bidirectional multi-interaction matching sequence model is proposed by using word2vec and dependency2vec. This model obtains matching features by convolving and pooling the word-granularity (word vector, dependency vector) interaction sequences in two directions. Next, the model aggregates the bi-direction matching features. The paper evaluates the model on two tasks: paraphrase identification and natural language inference. The experimental results show that the combination of word and word's dependence can enhance the ability of extracting matching features between two sentences. The results also show that the model with dependency can achieve higher accuracy than these models without using dependency.
机译:许多自然语言处理任务,如信息检索,智能问题应答和机器翻译需要计算句子相似度。过去使用的传统计算方法无法解决语义理解问题。首先,基于暹罗缺乏句子互动的模型结构;其次,它具有匹配的问题,该问题包含缺少位置信息,并且仅基于匹配模型使用部分匹配因子。在本文中,提出了单词和单词依赖的组合来计算句子相似性。这种组合可以提取单词特征和Word的依赖功能。为了提取更多匹配特征,通过使用Word2VEC和Dependency2Vec提出双向多交互匹配序列模型。该模型通过在两个方向上卷积和汇集字粒度(字向量,依赖性向量)交互序列来获得匹配功能。接下来,模型聚合双向匹配功能。本文评估了两项任务的模型:解释识别和自然语言推断。实验结果表明,单词和单词依赖的组合可以提高提取两个句子之间的匹配功能的能力。结果还表明,依赖性的模型可以在不使用依赖性的情况下实现比这些模型更高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号