首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Classification of Fashion Article Images Based on Improved Random Forest and VGG-IE Algorithm
【24h】

Classification of Fashion Article Images Based on Improved Random Forest and VGG-IE Algorithm

机译:基于改进的随机林和VGG-IE算法的时尚文章图像分类

获取原文
获取原文并翻译 | 示例

摘要

In classification of fashion article images based on e-commerce image recommendation system, the classification accuracy and computation time cannot meet the actual requirements. Herein, for the first time to our knowledge, we present two diverse image recognition approaches for classification of fashion article images called random-forest method based on genetic algorithm (GA-RF) and Visual Geometry Group-Image Enhancement algorithm (VGG-IE) to solve classification accuracy and computation time problem. In GA-RF, the number of segmentation times and the decision trees are the key factors affecting the classification results. improved genetic algorithm is introduced into the parameter optimization of forests to determine the optimal combination of the two parameters with minimal manual intervention. Finally, we propose six different Deep Neural Network architectures, including VGG-IE, to improve classification accuracy. The VGG-IE algorithm uses batch normalization and seven kinds training-data augmentation for ease and promotion of learning process. We investigate the effectiveness of the proposed method using Fashion-MNIST dataset and 70 000 pictures, Experimental results demonstrate that, in comparison with the state-of-the-art algorithms for 10 categories of image recognition, our VGG algorithm has the shortest computational time when it satisfies certain classification accuracy. VGG-IE approach has the highest classification accuracy.
机译:在基于电子商务图像推荐系统的时尚文章图像的分类中,分类准确性和计算时间不能满足实际要求。这里,首次对我们的知识进行了第一次,我们呈现了两个不同的图像识别方法,用于基于遗传算法(GA-RF)和视觉几何组 - 图像增强算法(VGG-IE)的随机林方法的时尚文章图像分类解决分类准确性和计算时间问题。在GA-RF中,分割时间和决策树的数量是影响分类结果的关键因素。改进的遗传算法被引入森林参数优化,以确定两个参数的最佳组合,具有最小的手动干预。最后,我们提出了六种不同的深神经网络架构,包括VGG-IE,提高分类准确性。 VGG-IE算法使用批量标准化和七种培训 - 数据增强,以便于学习过程促进。我们调查使用时尚Mnist DataSet和70 000张图片的提出方法的有效性,实验结果表明,与最先进的10类图像识别的最先进的算法相比,我们的VGG算法具有最短的计算时间当它满足某些分类准确性时。 VGG-IE方法具有最高的分类准确性。

著录项

  • 来源
  • 作者单位

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

    Hefei Univ Technol Sch Artificial Intelligence Sch Comp Sci & Informat Engn Hefei 290009 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image recommendation; deep learning; random forest; VGG; Fashion-MNIST;

    机译:图像推荐;深入学习;随机森林;vgg;时尚 - mnist;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号