首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Kernel Affine Projection P-norm (KAPP) Filtering under Alpha Stable Distribution Noise Environment
【24h】

Kernel Affine Projection P-norm (KAPP) Filtering under Alpha Stable Distribution Noise Environment

机译:alpha稳定分布噪声环境下的内核仿射投影P-Norm(KAPP)滤波

获取原文
获取原文并翻译 | 示例

摘要

Aiming at improving the performance of the nonlinear adaptive filtering under the alpha-stable distribution noise environment, Kernel Affine Projection P-norm (KAPP) algorithm based on the minimum dispersion coefficient criterion and the affine projection is deduced. The accuracy of the gradient estimation is enhanced by using the input signals and the error signals at multiple times. The simulation results on Mackey-Glass chaotic time series prediction show that the KAPP algorithm has faster convergence speed, better steady-state performance and stronger robustness under the Gaussian noise and stable distributed noise environment.
机译:旨在提高在α稳定分布噪声环境下的非线性自适应滤波的性能,推导了基于最小色散系数标准和仿射投影的基于最小色散系数标准的核仿射投影p-narm(Kapp)算法。通过在多次使用输入信号和误差信号,增强了梯度估计的精度。 Mackey-Glass混沌时间序列预测的仿真结果表明,KAPP算法在高斯噪声和稳定分布式噪声环境下具有更快的收敛速度,更好的稳态性能和更强的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号