首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A GPU-Based Automatic Approach for Guide Wire Tracking in Fluoroscopic Sequences
【24h】

A GPU-Based Automatic Approach for Guide Wire Tracking in Fluoroscopic Sequences

机译:一种基于GPU的荧光序列导线跟踪的自动方法

获取原文
获取原文并翻译 | 示例

摘要

Guide wire tracking in fluoroscopic images has done a significant task in assisting the physicians during radiology-aided interventions. Many groups have tried to detect the guide wire from the fluoroscopic images based on the image properties. The main challenge is that manual intervention is required during the detection. Other groups try to introduce localizers to track guide wires during intervention, which requires additional hardware equipment, and may intervene with the traditional clinical routines. Machine learning methods are also exploited. Although such methods may provide accurate tracking, they often require large amount of data and training time.In this paper, we propose a GPU-based fast and automatic approach to track guide wires in fluoroscopic sequences. We propose a multi-scale filtering and gradient vector field-based real-time tracking method for guide wire tracking from fluoroscopic images. To improve calculation efficiency and meet real-time application requirement, we propose a GPU-based acceleration scheme, and also a Bayesian filter-like motion tracking method to limit the guide wire tracking to a smaller range to improve calculation efficiency.We test our proposed method on two test data sets of fluoroscopic sequences of 102 frames and 72 frames. We achieve an average guide wire detection rate of 96.7%, a false detection rate of 0.0011% and an error distance measure of 0.83 pixels for the first sequence, and 98.8%, 0.000069% and 0.85 pixels, respectively, for the second sequence. With the proposed acceleration method, we finish calculation for the first sequence in nine seconds, thus, efficiency is enhanced by 100 times with the unaccelerated algorithm.
机译:透视图像中的导线跟踪在放射学辅助干预措施期间辅助医生进行了重要任务。许多组已经尝试根据图像特性从荧光透视图像中检测导线。主要挑战是在检测期间需要手动干预。其他组试图引入本地化器,以在干预过程中跟踪导线,这需要额外的硬件设备,并且可以与传统的临床常规进行干预。机器学习方法也被利用。虽然这些方法可以提供准确的跟踪,但它们通常需要大量的数据和训练时间。本文提出了一种基于GPU的快速和自动方法来轨道荧光序列中的导线。我们提出了一种基于多尺度的滤波和梯度矢量场的实时跟踪方法,用于从透镜图像引导线路跟踪。为了提高计算效率并满足实时应用要求,我们提出了基于GPU的加速度方案,以及贝叶斯滤波器类似的运动跟踪方法,以将导线跟踪限制为更小的范围以提高计算效率。我们测试我们提出的计算效率。我们测试在102帧和72帧的两种测试数据组中的两种测试数据集和72帧。我们达到平均导线检测率为96.7%,假检出率为0.0011%的误差率为0.83像素的0.83像素,分别为第二个序列的98.8%,0.0069%和0.85像素。利用所提出的加速方法,我们在九秒钟内完成第一个序列的计算,因此,利用Unceledated算法提高了100次的效率。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Shenzhen Inst Adv Technol Xili Univ Town Xueyuan Rd 1068 Shenzhen Guangdong Peoples R China|Univ Chinese Acad Sci Shenzhen Coll Adv Technol Beijing Peoples R China;

    Univ Chinese Acad Sci Shenzhen Coll Adv Technol Beijing Peoples R China;

    Univ Chinese Acad Sci Shenzhen Coll Adv Technol Beijing Peoples R China;

    Univ Chinese Acad Sci Shenzhen Coll Adv Technol Beijing Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    GPU; guide wire tracking; image guided therapy;

    机译:GPU;导线跟踪;图像引导疗法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号