首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Network Intrusion Feature Map Node Equalization Algorithm Based on Modified Variable Step-Size Constant Modulus
【24h】

Network Intrusion Feature Map Node Equalization Algorithm Based on Modified Variable Step-Size Constant Modulus

机译:基于修正变步长常数模的网络入侵特征图节点均衡算法

获取原文
获取原文并翻译 | 示例

摘要

When the network is subject to intrusion and attack, the node output channel equalization will be affected, resulting in bit error and distortion in the output of network transmission symbols. In order to improve the anti-attack ability and equalization of network node, a network intrusion feature map node equalization algorithm based on modified variable step-size constant modulus blind equalization algorithm (MISO-VSS-MCMA) is proposed. In this algorithm, the node transmission channel model after network intrusion is constructed, and sequential processing is performed to intruded nodes with the variable structure feedback link control method. With diversity spread spectrum technology, the channel loss after network intrusion is compensated and the network intrusion map feature is extracted. According to the extracted feature amount, channel equalization processing is performed for the cost function with the MISO-VSS-MCMA method to reduce the damage of network intrusion to the channel. Simulation results show that in node transmission channel equalization after network intrusion, this algorithm can reduce the error bit rate of signal transmission in network, and provide a good ability of correcting phase deflection in the output constellation, thus avoiding the error bit distortion and channel damage caused by network intrusion to the signal with a good equalization effect. This algorithm provides stronger convergence and map concentration, which demonstrates that its anti-interference and signal recovery capabilities are better, so it improves the anti-attack ability of the network.
机译:当网络受到入侵和攻击时,节点输出通道均衡将受到影响,从而导致网络传输符号的输出中出现误码和失真。为了提高网络节点的抗攻击能力和均衡性,提出了一种基于改进的变步长恒定模量盲均衡算法的网络入侵特征图节点均衡算法(MISO-VSS-MCMA)。该算法建立了网络入侵后的节点传输通道模型,并采用变结构反馈链路控制方法对入侵节点进行顺序处理。利用分集扩频技术,可以补偿网络入侵后的信道损耗,并提取网络入侵图特征。根据提取的特征量,使用MISO-VSS-MCMA方法对代价函数执行信道均衡处理,以减少网络入侵对信道的损害。仿真结果表明,在网络入侵后节点传输通道均衡的情况下,该算法可以降低网络中信号传输的误码率,并具有良好的输出星座图相位校正能力,从而避免了误码畸变和信道损坏。由网络入侵引起的信号均衡效果很好。该算法具有较强的收敛性和图集中性,说明其抗干扰能力和信号恢复能力更好,从而提高了网络的抗攻击能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号