首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A Hybrid Model Based on Logistic Regression Algorithm and Extraction Algorithm Using Reward Extremum to Real-Time Detect Blade Icing Alarm
【24h】

A Hybrid Model Based on Logistic Regression Algorithm and Extraction Algorithm Using Reward Extremum to Real-Time Detect Blade Icing Alarm

机译:基于Logistic回归算法与奖励极值提取算法实时检测叶片结冰警报的混合模型

获取原文
获取原文并翻译 | 示例

摘要

Generally, the blades of wind turbine installed in cold regions often encounter the situation of icing on their surface in winter, which affects the performance of wind turbine greatly and reduces power generation. Blade icing of wind turbine is a typical alarm related to multivariates, such as environment temperature, humidity, blade rotation and so on. To successfully achieve a supervised classification, it is necessary to extract the correlated features with blade icing. This paper proposes an extraction algorithm using reward extremism which can extract a group of variables correlated to blade icing from many monitoring variables of wind turbine, and they affect each other. This algorithm, using reward function which can measure the reward or value of alarm problem, can effectively distinguish the variables correlated to blade icing from the uncorrelated ones without knowing the mean of variables and the relations between them. Whether the blade of wind turbine is iced or not is a binary logic, so logistic regression algorithm is better choice to detect blade icing. Hence, this paper proposes a hybrid model using logistic regression algorithm and extraction algorithm using reward extremism, which can be built by machine learning with historic monitoring data. This model can real-time detect blade icing by real-time monitoring data. A correlation variable set can be obtained by the application of extraction algorithm using reward extremism on the historic monitoring data; and then the weights of the correlation variables in the set can be gained from the historic data by using logistic regression algorithm, so a blade icing detection pattern can be found using logistic regression algorithm; finally, whether the blade of wind turbine is iced in delay time or not can be real-time detected with the help of the hybrid model by real-time monitoring data. It is proved by wind turbine data that this hybrid model can work well not only to get correlation variable set but also to improve the generalization performance of logistic regression and achieve better prediction results. The performance of the model on blade icing alarm of wind turbine provides a new way to find out multivariate correlation to alarm from the mass historic monitoring data.
机译:通常,安装在寒冷地区的风力涡轮机叶片在冬季经常会在其表面结冰,这极大地影响了风力涡轮机的性能并降低了发电量。风力涡轮机的叶片结冰是与多元变量有关的典型警报,例如环境温度,湿度,叶片旋转等。为了成功地实现监督分类,有必要使用刀片糖衣提取相关特征。本文提出了一种利用奖励极端主义的提取算法,该算法可以从风力发电机的许多监测变量中提取与叶片结冰相关的一组变量,并且它们相互影响。该算法利用可测量警报问题的奖励或价值的奖励函数,可以有效地将与叶片结冰相关的变量与不相关的变量区分开,而无需了解变量的均值及其之间的关系。风力涡轮机的叶片是否结冰是二进制逻辑,因此逻辑回归算法是检测叶片结冰的更好选择。因此,本文提出了一种使用逻辑回归算法和使用奖励极端主义的提取算法的混合模型,该模型可以通过机器学习并结合历史监测数据来构建。该模型可以通过实时监控数据来实时检测刀片结冰。通过对历史监测数据采用奖励极值提取算法,可以得到相关变量集。然后利用logistic回归算法从历史数据中获取相关变量的权重,从而可以利用logistic回归算法找到叶片结冰的检测模式。最终,借助混合模型,通过实时监测数据,可以实时检测出风力涡轮机叶片是否在延迟时间内结冰。风力发电机数据证明,该混合模型不仅可以很好地获得相关变量集,而且可以提高逻辑回归的泛化性能,并获得较好的预测结果。该模型对风机叶片结冰报警的性能提供了一种从大量历史监测数据中找出与报警相关的多元相关性的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号