首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A Fault Diagnosis Intelligent Algorithm Based on Improved BP Neural Network
【24h】

A Fault Diagnosis Intelligent Algorithm Based on Improved BP Neural Network

机译:基于改进的BP神经网络的故障诊断智能算法

获取原文
获取原文并翻译 | 示例

摘要

The fault diagnosis intelligent algorithm makes full use of the associative memory and pattern recognition function of the neural network to compare the abnormal value of various parameters of the engine fault with the reference value of the known fault mode, which can shorten the fault diagnosis time and improve the diagnosis efficiency. BP neural network model as one of the most widely used neural network models in the world is of significance to solve nonlinear complex problems. Of course, there are also some deficiencies in it, such as long training time and ease to trap into local minimum This paper utilized the global search advantage of genetic algorithm to optimize the optimal weight and threshold value of BP neural network. Furthermore, an improved BP neural network was put forward, which is greatly improved in stability, generalization and convergence rate. Taking fault diagnosis of automobile engine as an example, a simulation experiment was carried out on the established model. The research results indicate that improved neural network model owns a higher accuracy than pure GA model or BP neural network model (with an average accuracy improved by 19.04% than traditional model), and its effect is satisfactory.
机译:故障诊断智能算法充分利用神经网络的关联记忆和模式识别功能,将发动机故障各种参数的异常值与已知故障模式的参考值进行比较,可以缩短故障诊断时间,缩短故障诊断时间。提高诊断效率。 BP神经网络模型作为世界上使用最广泛的神经网络模型之一,对于解决非线性复杂问题具有重要意义。当然,它还存在一些不足,例如训练时间长和容易陷入局部最小值。本文利用遗传算法的全局搜索优势来优化BP神经网络的最佳权重和阈值。此外,提出了一种改进的BP神经网络,它在稳定性,泛化性和收敛速度上都有很大的提高。以汽车发动机故障诊断为例,对建立的模型进行了仿真实验。研究结果表明,改进的神经网络模型具有比纯GA模型或BP神经网络模型更高的精度(平均精度比传统模型提高了19.04%),效果令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号