首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >A Text Classification Algorithm Based on Improved Multidimensional-Multiresolution Topological Pattern Recognition
【24h】

A Text Classification Algorithm Based on Improved Multidimensional-Multiresolution Topological Pattern Recognition

机译:基于改进的多维多分辨率拓扑模式识别的文本分类算法

获取原文
获取原文并翻译 | 示例

摘要

Traditional pattern recognition is based on "optimal partition" and the goal is to find an optimal classification interface based on the distribution of each category in high-dimensional space, thus has its inherent shortcomings and deficiencies. While topology pattern recognition can effectively compensate for the shortcomings of traditional pattern recognition, topological pattern recognition is based on "cognition" and the goal is to find the appropriate cover according to the "complex set cover" in high-dimensional space to achieve cognitive effect. Topological pattern recognition can effectively consummate the characteristics of high error rate, low recognition rate and repetitive training in the existing recognition system with low training sample number. At present, topology pattern recognition has been applied in many areas of social life. However, one problem that can't be ignored is that topological pattern recognition requires a long training time and low fault tolerance rate. Therefore, this paper proposes an improved multidimensional-multiresolution topological pattern recognition, and applies it to text classification and recognition. The results show that the improved multidimensional-multiresolution topological pattern recognition method can effectively reduce the training time of text classification and improve the classification efficiency.
机译:传统的模式识别是基于“最优划分”的,其目标是基于高维空间中每个类别的分布来找到最优的分类接口,因此具有其固有的缺陷和不足。虽然拓扑模式识别可以有效弥补传统模式识别的不足,但拓扑模式识别是基于“认知”的,目的是根据高维空间中的“复杂集覆盖”找到合适的覆盖,以达到认知效果。 。拓扑模式识别可以有效地完善现有训练样本数量少的识别系统中错误率高,识别率低和重复训练的特点。目前,拓扑模式识别已应用于社会生活的许多领域。但是,一个不可忽视的问题是拓扑模式识别需要较长的训练时间和较低的容错率。因此,本文提出了一种改进的多维-多分辨率拓扑模式识别方法,并将其应用于文本分类和识别。结果表明,改进的多维多分辨率拓扑模式识别方法可以有效减少文本分类的训练时间,提高分类效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号