首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >The Modeling Method of a Vibrating Screen Efficiency Prediction Based on KPCA and LS-SVM
【24h】

The Modeling Method of a Vibrating Screen Efficiency Prediction Based on KPCA and LS-SVM

机译:基于KPCA和LS-SVM的振动筛效率预测建模方法

获取原文
获取原文并翻译 | 示例

摘要

A vibrating screen efficiency prediction modeling method based on autoregressive (AR) model and least square support vector machine (LS-SVM) was proposed. The vibration signals of a self-synchronized vibrating screen were collected to establish the AR model. Nonlinear principal components of the signals were extracted by the kernel principal component analysis (KPCA), followed by the regression model reconstruction using LS-SVM to accomplish reduced complexity of the prediction model from AR coefficients and improved generalization capacity and learning speed. The results show that the model predictions are consistent with the experimental data, which indicates that the modeling method is applicable and feasible in adjusting the design and process parameters of vibrating screens. Furthermore, the work condition monitoring method in the experiment is feasible for faults diagnosis of mechanical equipment.
机译:提出了一种基于自回归模型和最小二乘支持向量机的振动筛效率预测建模方法。收集自同步振动筛的振动信号以建立AR模型。通过核主成分分析(KPCA)提取信号的非线性主成分,然后使用LS-SVM进行回归模型重构,以从AR系数中降低预测模型的复杂度,并提高泛化能力和学习速度。结果表明,该模型的预测结果与实验数据吻合较好,表明该方法在调整振动筛的设计和工艺参数方面是可行的。此外,实验中的工作状态监测方法对于机械设备的故障诊断是可行的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号