首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Spectral-Spatial Sparse Subspace Clustering Based on Three-Dimensional Edge-Preserving Filtering for Hyperspectral Image
【24h】

Spectral-Spatial Sparse Subspace Clustering Based on Three-Dimensional Edge-Preserving Filtering for Hyperspectral Image

机译:基于三维边缘保留滤波的高光谱图像光谱空间稀疏子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Integrating spatial information into the sparse subspace clustering (SSC) models for hyperspectral images (HSIs) is an effective way to improve clustering accuracy. Since HSI is a three-dimensional (3D) cube datum, 3D spectral-spatial filtering becomes a simple method for extracting the spectral-spatial information. In this paper, a novel spectral-spatial SSC framework based on 3D edge-preserving filtering (EPF) is proposed to improve the clustering accuracy of HSI. First, the initial sparse coefficient matrix is obtained in the sparse representation process of the classical SSC model. Then, a 3D EPF is conducted on the initial sparse coefficient matrix to obtain a more accurate coefficient matrix by solving an optimization problem based on ADMM, which is used to build the similarity graph. Finally, the clustering result of HSI data is achieved by applying the spectral clustering algorithm to the similarity graph. Specifically, the filtered matrix can not only capture the spectral-spatial information but the intensity differences. The experimental results on three real-world HSI datasets demonstrated that the potential of including the proposed 3D EPF into the SSC framework can improve the clustering accuracy.
机译:将空间信息集成到用于高光谱图像(HSI)的稀疏子空间聚类(SSC)模型中是提高聚类精度的有效方法。由于HSI是三维(3D)立方体数据,因此3D光谱空间滤波成为提取光谱空间信息的简单方法。本文提出了一种基于3D边缘保留滤波(EPF)的光谱空间SSC框架,以提高HSI的聚类精度。首先,在经典SSC模型的稀疏表示过程中获得初始稀疏系数矩阵。然后,通过求解基于ADMM的优化问题,对初始稀疏系数矩阵进行3D EPF处理,以获得更准确的系数矩阵,并将其用于构建相似度图。最后,通过将光谱聚类算法应用于相似度图来获得HSI数据的聚类结果。具体而言,滤波后的矩阵不仅可以捕获光谱空间信息,而且可以捕获强度差异。在三个真实世界的HSI数据集上的实验结果表明,将拟议的3D EPF包含到SSC框架中的潜力可以提高聚类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号