首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >COMPARISON OF VARIOUS ROUTINES FOR UNKNOWN ATTRIBUTE VALUE PROCESSING: THE COVERING PARADIGM
【24h】

COMPARISON OF VARIOUS ROUTINES FOR UNKNOWN ATTRIBUTE VALUE PROCESSING: THE COVERING PARADIGM

机译:未知属性值处理的各种常规比较:覆盖范式

获取原文
获取原文并翻译 | 示例

摘要

Simple inductive learning algorithms assume that all attribute values are available. The well-known Quinlan's paper discusses quite a few routines for the processing of unknown attribute values in the TDIDT family and analyzes seven of them. This paper introduces five routines for the processing of unknown attribute values that have been designed for the CN4 learning algorithm, a large extension of the well-known CN2. Both algorithms CN2 and CN4 induce lists of decision rules from examples applying the covering paradigm. CN2 offers two ways for the processing of unknown attribute values. The CN4's five routines differ in style of matching complexes with examples (objects) that involve unknown attribute values. The definition of matching is discussed in detail in the paper. The strategy of unknown value processing is described both for learning and classification phases in individual routines. The results of experiments with various percentages of unknown attribute values on real-world (mostly medical) data are presented and performances of all five routines are compared.
机译:简单的归纳学习算法假定所有属性值均可用。著名的Quinlan论文讨论了TDIDT系列中处理未知属性值的许多例程,并分析了其中的七个。本文介绍了五个处理未知属性值的例程,这些例程是为CN4学习算法(众所周知的CN2的大扩展)而设计的。算法CN2和CN4都从应用覆盖范式的示例中得出决策规则列表。 CN2提供了两种处理未知属性值的方法。 CN4的五个例程在将复杂对象与涉及未知属性值的示例(对象)匹配的样式上有所不同。本文将详细讨论匹配的定义。在单个例程的学习阶段和分类阶段都描述了未知值处理的策略。给出了在实际(主要是医学)数据上使用不同百分比的未知属性值的实验结果,并对所有五个例程的性能进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号