首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >RECOGNITION OF HAND-PRINTED LATIN CHARACTERS BASED ON GENERALIZED HOUGH TRANSFORM AND DECISION TREE LEARNING TECHNIQUES
【24h】

RECOGNITION OF HAND-PRINTED LATIN CHARACTERS BASED ON GENERALIZED HOUGH TRANSFORM AND DECISION TREE LEARNING TECHNIQUES

机译:基于广义Hugh变换和决策树学习技术的拉丁字母手写字符识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new technique for the recognition of hand-printed Latin characters using machine learning. Conventional methods have relied on manually constructed dictionaries which are not only tedious to construct but also difficult to make tolerant to variation in writing styles. The advantages of machine learning are that it can generalize over a large degree of variation between writing styles, and recognition rules can be constructed by example. Characters are scanned into the computer and preprocessing techniques transform the bit-map representation of the characters into a set of primitives which can be represented in an attribute base form. A set of such representations for each character is then input to C4.5 which produces a decision tree for classifying each character.
机译:本文提出了一种使用机器学习识别手印拉丁字符的新技术。常规方法依赖于人工构造的词典,该词典不仅构造繁琐,而且难以容忍书写风格的变化。机器学习的优势在于,它可以概括写作风格之间的很大差异,并且可以通过示例构建识别规则。字符被扫描到计算机中,并且预处理技术将字符的位图表示形式转换为一组基元,这些基元可以以属性库的形式表示。然后,将每个字符的一组此类表示输入到C4.5,后者会生成用于对每个字符进行分类的决策树。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号