首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >STRING EDIT DISTANCE, RANDOM WALKS AND GRAPH MATCHING
【24h】

STRING EDIT DISTANCE, RANDOM WALKS AND GRAPH MATCHING

机译:字符串编辑距离,随机游走和图形匹配

获取原文
获取原文并翻译 | 示例

摘要

This paper shows how the eigenstructure of the adjacency matrix can be used for the purposes of robust graph matching. We commence from the observation that the leading eigenvector of a transition probability matrix is the steady state of the associated Markov chain. When the transition matrix is the normalized adjacency matrix of a graph, then the leading eigenvector gives the sequence of nodes of the steady state random walk on the graph. We use this property to convert the nodes in a graph into a string where the node-order is given by the sequence of nodes visited in the random walk. We match graphs represented in this way, by finding the sequence of string edit operations which minimize edit distance.
机译:本文说明了如何将邻接矩阵的本征结构用于鲁棒图匹配的目的。我们从观察开始,即转移概率矩阵的前导特征向量是相关联的马尔可夫链的稳态。当过渡矩阵是图的归一化邻接矩阵时,前导特征向量将给出图上稳态随机游动的节点序列。我们使用此属性将图形中的节点转换为字符串,其中节点顺序由随机游历中访问的节点序列给出。通过找到最小化编辑距离的字符串编辑操作序列,我们匹配以这种方式表示的图形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号