首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >WAVELET-BASED SALIENT ENERGY POINTS FOR UNSUPERVISED TEXTURE SEGMENTATION
【24h】

WAVELET-BASED SALIENT ENERGY POINTS FOR UNSUPERVISED TEXTURE SEGMENTATION

机译:基于小波的显着能量点的无监督纹理分割

获取原文
获取原文并翻译 | 示例

摘要

Despite extensive research on image texture analysis, it is still problematic to characterize and segment texture images especially in the presence of complex patterns. Upon tremendous advancement of the internet and the digital technology, there is also a need for the development of simple but efficient algorithms, which can be adaptable to real-time systems. In this study, we propose such an approach based on multiresolu-tion discrete wavelet transform (DWT). After the transform, we compute salient energy points from each directional sub-band (LH, HL, and HH) in the form of binary image by thresholding intermittency indices of wavelet coefficients. We then propose and extract two new texture features namely Salient Point Density (SPD) and Salient Point Distribution Nonuniformity (SPDN) based on the number and the distribution of salient pixels in the local neighborhood of every pixel of the multiscale binary images. We thus obtain a set of feature images, which are subsequently applied to the popular K-means algorithm for the unsuperviscd segmentation of texture images. Though the above representation appear simple and infrequent in the literature, it proves useful in the context of texture segmentation. Experimental results with the standard texture (Brodatz) and natural images demonstrate the robustness and potentiality of the proposed approach.
机译:尽管对图像纹理分析进行了广泛的研究,但是特别是在存在复杂图案的情况下,表征和分割纹理图像仍然存在问题。随着互联网和数字技术的巨大发展,还需要开发简单但有效的算法,该算法可适用于实时系统。在这项研究中,我们提出了一种基于多分辨率离散小波变换(DWT)的方法。变换之后,我们通过对小波系数的间歇性指标进行阈值计算,从每个方向子带(LH,HL和HH)以二进制图像形式计算出显着能量点。然后,我们根据多尺度二进制图像每个像素的局部邻域中显着像素的数量和分布,提出并提取两个新的纹理特征,即显着点密度(SPD)和显着点分布不均匀性(SPDN)。因此,我们获得了一组特征图像,这些特征图像随后被应用于流行的K-means算法,用于纹理图像的无监督分割。尽管上述表示在文献中显得简单且很少见,但在纹理分割的背景下证明是有用的。标准纹理(Brodatz)和自然图像的实验结果证明了该方法的鲁棒性和潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号